SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forte Amalia) "

Sökning: WFRF:(Forte Amalia)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alajbegovic, Azra, et al. (författare)
  • Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - Molecular Cell Research. - : Elsevier BV. - 0167-4889. ; 1864:6, s. 1088-1098
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA.In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells. This analysis was performed using cardiovascular disease-focused miRNA arrays in both mouse and human cells. The potential clinical importance of actin polymerization in aortic aneurysm was evaluated using biopsies from mildly dilated human thoracic aorta in patients with stenotic tricuspid or bicuspid aortic valve.By integrating information from multiple qPCR based miRNA arrays we identified a group of five miRNAs (miR-1, miR-22, miR-143, miR-145 and miR-378a) that were sensitive to actin polymerization and MRTF-A overexpression in both mouse and human vascular smooth muscle. With the exception of miR-22, these miRNAs were also relatively enriched in striated and/or smooth muscle containing tissues. Actin polymerization was found to be dramatically reduced in the aorta from patients with mild aortic dilations. This was associated with a decrease in actin/MRTF-regulated miRNAs.In conclusion, the transcriptional co-activator MRTF-A and actin polymerization regulated a subset of miRNAs in vascular smooth muscle. Identification of novel miRNAs regulated by actin/MRTF-A may provide further insight into the mechanisms underlying vascular disease states, such as aortic aneurysm, as well as novel ideas regarding therapeutic strategies. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
  •  
2.
  • Albinsson, Sebastian, et al. (författare)
  • Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta
  • 2017
  • Ingår i: Heart and Vessels. - : Springer Science and Business Media LLC. - 0910-8327 .- 1615-2573. ; 32:6, s. 750-767
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs are able to modulate gene expression in a range of diseases. We focused on microRNAs as potential contributors to the pathogenesis of ascending aorta (AA) dilatation in patients with stenotic tricuspid (TAV) or bicuspid aortic valve (BAV). Aortic specimens were collected from the ‘concavity’ and the ‘convexity’ of mildly dilated AAs and of normal AAs from heart transplant donors. Aortic RNA was analyzed through PCR arrays, profiling the expression of 84 microRNAs involved in cardiovascular disease. An in silico analysis identified the potential microRNA–mRNA interactions and the enriched KEGG pathways potentially affected by microRNA changes in dilated AAs. Distinct signatures of differentially expressed microRNAs are evident in TAV and BAV patients vs. donors, as well as differences between aortic concavity and convexity in patients only. MicroRNA changes suggest a switch of SMC phenotype, with particular reference to TAV concavity. MicroRNA changes potentially affecting mechanotransduction pathways exhibit a higher prevalence in BAV convexity and in TAV concavity, with particular reference to TGF-β1, Hippo, and PI3K/Akt/FoxO pathways. Actin cytoskeleton emerges as potentially affected by microRNA changes in BAV convexity only. MicroRNAs could play distinct roles in BAV and TAV aortopathy, with possible implications in diagnosis and therapy.
  •  
3.
  • Forte, Amalia, et al. (författare)
  • Differential expression of proteins related to smooth muscle cells and myofibroblasts in human thoracic aortic aneurysm
  • 2013
  • Ingår i: Histology and Histopathology. - 1699-5848. ; 28:6, s. 795-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Increasing knowledge is required for a better comprehension of the etiology of thoracic aortic aneurysm (TAA). The aim of this study was to highlight the modulations in vascular cell phenotypes, including myofibroblasts (MFs), in human TAA specimens compared to healthy aortas. Methods: histology, RT-PCR and immunohistochemical analysis of a panel of molecules, including EDA Fibronectin (Fn), smoothelin, CD34 and alpha-smooth muscle actin (alpha-SMA), selected on the basis of their informative potential as markers of smooth muscle cells (SMCs) and MF phenotypic modulation, were performed on all samples. Results: The media of TAAs was characterized by the absence of smoothelin, the unaltered expression of alpha-SMA accompanied by an alteration of its distribution pattern, and by the activated expression of the ED-A isoform of Fn. We found a concentration of round-shaped cells exclusively in the adventitia and in the perivascular tissue of TAAs, also rich in vasa vasorum, largely expressing alpha-SMA, while a sub-population also expressed ED-A Fn and CD34. CD34 was expressed by several cells in the intima of TAAs, together with cells expressing cytoplasmatic EDA Fn and alpha-SMA in comparison to healthy aortas. Conclusion: TAA specimens show an altered expression and localization of SMC and MF differentiation markers in comparison to healthy aortas, with possible implications on remodeling.
  •  
4.
  • Forte, Amalia, et al. (författare)
  • Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries
  • 2009
  • Ingår i: Clinical Science. - 1470-8736. ; 116:1-2, s. 125-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular surgery aimed at stenosis removal induces local reactions often leading to restenosis. Although extensive analysis has been focused on pathways activated in injured arteries, little attention has been devoted to associated systemic vascular reactions. The aim of the present study was to analyse changes occurring in contralateral uninjured rat carotid arteries in the acute phase following unilateral injury. WKY (Wistar-Kyoto) rats were subjected to unilateral carotid arteriotomy. Contralateral uninjured carotid arteries were harvested from 4 h to 7 days after injury. Carotid arteries were also harvested from sham-operated rats and uninjured rats. Carotid morphology and morphometry were examined. Affymetrix microarrays were used for differential analysis of gene expression. A subset of data was validated by real-time RT-PCR (reverse transcription-PCR) and verified at the protein level by Western blotting. A total of 1011 genes were differentially regulated in contralateral uninjured carotid arteries from 4 h to 7 days after arteriotomy (P < 0.0001; fold change, >= 2) and were classified into 19 gene ontology functional categories. To a lesser extent, mRNA variations also occurred in carotid arteries of sham-operated rats. Among the changes, up-regulation of members of the RAS (renin-angiotensin system) was detected, with possible implications for vasocompensative mechanisms induced by arteriotomy. In particular, a selective increase in the 69 kDa isoform of the N-domain of ACE (angiotensin-converting enzyme), and not the classical somatic 195 kDa isoform, was observed in contralateral uninjured carotid arteries, suggesting that this 69 kDa isoenzyme could influence local Angll (angiotensin II) production. In conclusion, systemic reactions to injury occur in the vasculature, with potential clinical relevance, and suggest that caution is needed in the choice of controls during experimental design in vivo.
  •  
5.
  • Forte, Amalia, et al. (författare)
  • Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury
  • 2013
  • Ingår i: International Journal of Cardiology. - : Elsevier BV. - 0167-5273. ; 168:4, s. 3370-3380
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re) stenosis. Methods: The effect of DFMO on primary rat smooth muscle cells (SMCs) and mouse microvascular bEnd. 3 endothelial cells (ECs) was evaluated through the analysis of DNA synthesis, polyamine concentration, cell viability, cell cycle phase distribution and by RT-PCR targeting cyclins and genes belonging to the polyamine pathway. The effect of DFMO was then evaluated in arteriotomy-injured rat carotids through the analysis of cell proliferation and apoptosis, RT-PCR and immunohistochemical analysis of differential gene expression. Results: DFMO showed a differential effect on SMCs and on ECs, with a marked, sustained anti-proliferative effect of DFMO at 3 and 8 days of treatment on SMCs and a less pronounced, late effect on bEnd. 3 ECs at 8 days of DFMO treatment. DFMO applied perivascularly in pluronic gel at arteriotomy site reduced subsequent cell proliferation and preserved smooth muscle differentiation without affecting the endothelial coverage. Lumen area in DFMO-treated carotids was 49% greater than in control arteries 4 weeks after injury. Conclusions: Our data support the key role of polyamines in restenosis and suggest a novel therapeutic approach for this pathophysiological process. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
  •  
6.
  • Forte, Amalia, et al. (författare)
  • Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve
  • 2018
  • Ingår i: Heart and Vessels. - : Springer Science and Business Media LLC. - 0910-8327 .- 1615-2573. ; , s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyamines are cationic molecules synthesized via a highly regulated pathway, obtained from the diet or produced by the gut microbiota. They are involved in general molecular and cellular phenomena that play a role also in vascular disease. Bicuspid aortic valve (BAV) is a congenital malformation associated to a greater risk of thoracic ascending aorta (TAA) aneurysm, whose pathogenesis is not yet well understood. We focused on differential analysis of key members of polyamine pathway and on polyamine concentration in non-dilated TAA samples from patients with either stenotic tricuspid aortic valve (TAV) or BAV (diameter ≤ 45 mm), vs. normal aortas from organ donors, with the aim of revealing a potential involvement of polyamines in early aortopathy. Changes of gene expression in TAA samples were evaluated by RT-PCR. Changes of ornithine decarboxylase 1 (ODC1), a key enzyme in polyamine formation, and cationic amino acid transporter 1 (SLC7A1/CAT-1) expression were analyzed also by Western blot. ODC1 subcellular localization was assessed by immunohistochemistry. Polyamine concentration in TAA samples was evaluated by HPLC. BAV TAA samples showed an increased concentration of putrescine and spermidine vs. TAV and donor samples, together with a decreased mRNA level of polyamine anabolic enzymes and of the putative polyamine transporter SLC7A1/CAT-1. The catabolic enzyme spermidine/spermine N1-acetyltransferase 1 showed a significant mRNA increase in TAV samples only, together with a decreased concentration of spermine. The decreased expression of SLC7A1/CAT-1 and ODC1 mRNAs in BAV corresponded to increased or unchanged expression of the respective proteins. ODC was located mainly in smooth muscle cell (SMC) nucleus in TAV and donor samples, while it was present also in SMC cytoplasm in BAV samples, suggesting its activation. In conclusion, BAV, but not TAV non-dilated samples show increased polyamine concentration, accompanied by the activation of a regulatory negative feedback mechanism.
  •  
7.
  • Forte, Amalia, et al. (författare)
  • Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy
  • 2019
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 0022-2828. ; 129, s. 179-187
  • Forskningsöversikt (refereegranskat)abstract
    • Polyamines are small aliphatic cationic molecules synthesized via a highly regulated pathway and involved in general molecular and cellular phenomena. Both mammalian cells and microorganisms synthesize polyamines, and both sources may contribute to the presence of polyamines in the circulation. The dominant location for microorganisms within the body is the gut. Accordingly, the gut microbiota probably synthesizes most of the polyamines in the circulation in addition to those produced by the mammalian host cells. Polyamines are mandatory for cellular growth and proliferation. Established evidence suggests that the polyamine spermidine prolongs lifespan and improves cardiovascular health in animal models and humans through both local mechanisms, involving improved cardiomyocyte function, and systemic mechanisms, including increased NO bioavailability and reduced systemic inflammation. Higher levels of polyamines have been detected in non-dilated aorta of patients affected by bicuspid aortic valve congenital malformation, an aortopathy associated with an increased risk for thoracic ascending aorta aneurysm. In this review, we discuss metabolism of polyamines and their potential effects on vascular smooth muscle and endothelial cell function in vascular pathology of the thoracic ascending aorta associated with bicuspid or tricuspid aortic valve.
  •  
8.
  • Forte, Amalia, et al. (författare)
  • The Polyamine Pathway as a Potential Target for Vascular Diseases: Focus on Restenosis
  • 2011
  • Ingår i: Current Vascular Pharmacology. - 1570-1611. ; 9:6, s. 706-714
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyamines are organic polycations expressed by all living organisms, which are known to play an essential role in cell proliferation and differentiation. Recent studies revealed their involvement also in cell contractility and migration and in programmed cell death. These processes are known to contribute to restenosis, a pathophysiological process occurring in 10-20% of patients submitted to revascularization procedures. The advent of bare metal stents and of drug-eluting stents has significantly reduced but not eliminated the incidence of restenosis, which thus remains a clinically relevant problem. Despite the potential role of the polyamine pathway as a therapeutic target due to its involvement in proliferation, apoptosis and migration of vascular cells, experimental inhibition of polyamine synthesis and/or uptake has been poorly investigated in animal models of vascular disease. Here we review the current knowledge about molecular mechanisms related to polyamine functions, with particular reference to the role played by polyamines in vascular cell pathophysiology, together with experimental evidence obtained so far in animal models of (re) stenosis. We also evaluate the advantages of different routes of administration of polyamine synthesis/transport inhibitors and polyamine analogue molecules. Increasing knowledge about the molecular mechanisms and functions of polyamines is expected to shed new light on their potential role as a therapeutic target for restenosis reduction.
  •  
9.
  • Grossi, Mario, et al. (författare)
  • Inhibition of Polyamine Formation Antagonizes Vascular Smooth Muscle Cell Proliferation and Preserves the Contractile Phenotype.
  • 2014
  • Ingår i: Basic & Clinical Pharmacology & Toxicology. - : Wiley. - 1742-7843 .- 1742-7835. ; 115:5, s. 379-388
  • Tidskriftsartikel (refereegranskat)abstract
    • The polyamines putrescine, spermidine and spermine play essential roles in cell proliferation and migration, two processes involved in the development of vascular disease. Thus, intervention with polyamine formation may represent a way to inhibit unwanted vascular smooth muscle cell (VSMC) proliferation. The aim of the present study was to assess the importance of polyamines for VSMC proliferation and vascular contractility. The rate-limiting step in polyamine biosynthesis is catalyzed by ornithine decarboxylase. Treatment with α-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, reduced DNA synthesis in primary rat VSMCs in a concentration-dependent manner with an IC50 value of 100 μM. Moreover, DFMO reduced VSMC migration assessed in a scratch assay. The DFMO-induced attenuation of VSMC proliferation was associated with lowered cellular amount of polyamines. The anti-proliferative effect of DFMO was specific since supplementation with polyamines reversed the effect of DFMO on proliferation and normalized cellular polyamine levels. Isometric force recordings in cultured rat tail artery rings showed that DFMO counteracts the decrease in contractility caused by culture with foetal bovine serum as growth stimulant. We conclude that inhibition of polyamine synthesis by DFMO may limit the first wave of cell proliferation and migration, which occurs in the acute phase after vascular injury. Besides its anti-proliferative effect, DFMO may prevent loss of the smooth muscle contractile phenotype in vascular injury. This article is protected by copyright. All rights reserved.
  •  
10.
  • Grossi, Mario, et al. (författare)
  • Inhibition of polyamine uptake potentiates the anti-proliferative effect of polyamine synthesis inhibition and preserves the contractile phenotype of vascular smooth muscle cells.
  • 2015
  • Ingår i: Journal of Cellular Physiology. - : Wiley. - 1097-4652 .- 0021-9541.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased vascular smooth muscle cell (VSMC) proliferation is a factor in atherosclerosis and injury-induced arterial (re)stenosis. Inhibition of polyamine synthesis by α-difluoro-methylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, attenuates VSMC proliferation with high sensitivity and specificity. However, cells can escape polyamine synthesis blockade by importing polyamines from the environment. To address this issue, polyamine transport inhibitors (PTIs) have been developed. We investigated the effects of the novel trimer44NMe (PTI-1) alone and in combination with DFMO on VSMC polyamine uptake, proliferation and phenotype regulation. PTI-1 efficiently inhibited polyamine uptake in primary mouse aortic and human coronary VSMCs in the absence as well as in the presence of DFMO. Interestingly, culture with DFMO for 2 days substantially (>95%) reduced putrescine (Put) and spermidine (Spd) contents without any effect on proliferation. Culture with PTI-1 alone had no effect on either polyamine levels or proliferation rate, but the combination of both treatments reduced Put and Spd levels below the detection limit and inhibited proliferation. Treatment with DFMO for a longer time period (4 days) reduced Put and Spd below their detection limits and reduced proliferation, showing that only a small pool of polyamines is needed to sustain VSMC proliferation. Inhibited proliferation by polyamine depletion was associated with maintained expression of contractile smooth marker genes. In cultured intact mouse aorta, PTI-1 potentiated the DFMO-induced inhibition of cell proliferation. The combination of endogenous polyamine synthesis inhibition with uptake blockade is thus a viable approach for targeting unwanted vascular cell proliferation in vivo, including vascular restenosis. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy