SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fotouhi Faranak) "

Sökning: WFRF:(Fotouhi Faranak)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abbaspour, Saadeh, et al. (författare)
  • A comparative analysis of hybrid deep learning models for human activity recognition
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in artificial intelligence and machine learning (ML) led to effective methods and tools for analyzing the human behavior. Human Activity Recognition (HAR) is one of the fields that has seen an explosive research interest among the ML community due to its wide range of applications. HAR is one of the most helpful technology tools to support the elderly’s daily life and to help people suffering from cognitive disorders, Parkinson’s disease, dementia, etc. It is also very useful in areas such as transportation, robotics and sports. Deep learning (DL) is a branch of ML based on complex Artificial Neural Networks (ANNs) that has demonstrated a high level of accuracy and performance in HAR. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are two types of DL models widely used in the recent years to address the HAR problem. The purpose of this paper is to investigate the effectiveness of their integration in recognizing daily activities, e.g., walking. We analyze four hybrid models that integrate CNNs with four powerful RNNs, i.e., LSTMs, BiLSTMs, GRUs and BiGRUs. The outcomes of our experiments on the PAMAP2 dataset indicate that our proposed hybrid models achieve an outstanding level of performance with respect to several indicative measures, e.g., F-score, accuracy, sensitivity, and specificity. © 2020 by the authors.
  •  
3.
  • Khosroabadi, Fariba, et al. (författare)
  • SCATTER : Service Placement in Real-Time Fog-Assisted IoT Networks
  • 2021
  • Ingår i: Journal of Sensor and Actuator Networks. - : MDPI AG. - 2224-2708. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Internet of Things (IoT) networks dependent on cloud services usually fail in supporting real-time applications as there is no response time guarantees. The fog computing paradigm has been used to alleviate this problem by executing tasks at the edge of the network, where it is possible to provide time bounds. One of the challenging topics in a fog-assisted architecture is to task placement on edge devices in order to obtain a good performance. The process of task mapping into computational devices is known as Service Placement Problem (SPP). In this paper, we present a heuristic algorithm to solve SPP, dubbed as clustering of fog devices and requirement-sensitive service first (SCATTER). We provide simulations using iFogSim toolkit and experimental evaluations using real hardware to verify the feasibility of the SCATTER algorithm by considering a smart home application. We compared the SCATTER with two existing works: edge-ward and cloud-only approaches, in terms of Quality of Service (QoS) metrics. Our experimental results have demonstrated that SCATTER approach has better performance compared with the edge-ward and cloud-only, 42.1% and 60.2% less application response times, 22% and 27.8% less network usage, 45% and 65.7% less average application loop delays, and 2.33% and 3.2% less energy consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy