SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fournier Pascale) "

Sökning: WFRF:(Fournier Pascale)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carro, Lorena, et al. (författare)
  • Organic acids metabolism in Frankia alni
  • 2016
  • Ingår i: Symbiosis. - : Springer Science and Business Media LLC. - 0334-5114 .- 1878-7665. ; 70:1, s. 37-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic exchanges constitute the bases of the symbiosis between the nitrogen-fixing actinomycete Frankia and its host plant Alnus, but the identity of the compounds exchanged is still poorly known. In the current work, previously published transcriptomic studies of Alnus nodules and of symbiotic Frankia were reexamined for TCA cycle related genes. The bacterial TCA enzyme genes were all upregulated, especially the succinyl-CoA synthase and the citrate synthase while on the plant side, none was significantly modified in nodules relative to non-inoculated roots. A preliminary metabolomics approach permitted to see that citrate, 2-oxoglutarate, succinate, malate and fumarate were all more abundant (FC (Fold change) = 5-70) in mature nitrogen-fixing nodules than in roots. In the evaluation of the uptake and metabolism of these organic acids, a significant change was observed in the morphology of nitrogen fixing vesicles in vitro: the dicarboxylates malate, succinate and fumarate induced the formation of larger vesicles than was the case with propionate. Moreover, the production of spores was also modified depending on the organic acid present. The assays showed that most C4 dicarboxylates were taken up while C6 tricarboxylates were not and citrate even partially blocked catabolism of reserve carbon. Tests were performed to determine if the change in membrane permeability induced by Ag5, a peptide previously shown to modify the membranes of Frankia, increased the uptake of specific organic acids. No effect was observed with citrate while an increase in nitrogen fixation was seen with propionate.
  •  
2.
  • Herrera-Belaroussi, Aude, et al. (författare)
  • Candidatus Frankia nodulisporulans sp. nov., an Alnus glutinosa-infective Frankia species unable to grow in pure culture and able to sporulate in-planta
  • 2020
  • Ingår i: Systematic and Applied Microbiology. - : Elsevier BV. - 0723-2020 .- 1618-0984. ; 43:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a new Frankia species, for three non-isolated strains obtained from Alnus glutinosa in France and Sweden, respectively. These strains can nodulate several Alnus species (A. glutinosa, A. incana, A. alno-betula), they form hyphae, vesicles and sporangia in the root nodule cortex but have resisted all attempts at isolation in pure culture. Their genomes have been sequenced, they are significantly smaller than those of other Alnus-infective species (5 Mb instead of 7.5 Mb) and are very closely related to one another (ANI of 100%). The name Candidatus Frankia nodulisporulans is proposed.
  •  
3.
  • Persson, Tomas, et al. (författare)
  • Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of Datisca glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in Datisca glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both alpha- and beta-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.
  •  
4.
  •  
5.
  •  
6.
  • Zhang, Yu, et al. (författare)
  • Comparative phylogenomics and phylotranscriptomics provide insights into the genetic complexity of nitrogen-fixing root-nodule symbiosis
  • 2024
  • Ingår i: Plant communications. - 2590-3462. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodulespecific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy