SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frøkiaer Jørgen) "

Sökning: WFRF:(Frøkiaer Jørgen)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berg Hansen, Kristoffer, et al. (författare)
  • Myocardial efficiency in patients with different aetiologies and stages of heart failure
  • 2022
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 23:3, s. 328-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Myocardial external efficiency (MEE) is the ratio of cardiac work in relation with energy expenditure. We studied MEE in patients with different aetiologies and stages of heart failure (HF) to discover the role and causes of deranged MEE. In addition, we explored the impact of patient characteristics such as sex, body mass index (BMI), and age on myocardial energetics.Methods and results: Cardiac energetic profiles were assessed with C-11-acetate positron emission tomography (PET) and left ventricular ejection fraction (LVEF) was acquired with echocardiography. MEE was studied in 121 participants: healthy controls (n = 20); HF patients with reduced (HFrEF; n = 25) and mildly reduced (HFmrEF; n = 23) LVEF; and patients with asymptomatic (AS-asymp; n = 38) and symptomatic (AS-symp; n = 15) aortic stenosis (AS). Reduced MEE coincided with symptoms of HF irrespective of aetiology and declined in tandem with deteriorating LVEF. Patients with AS-symp and HFmrEF had reduced MEE as compared with controls (22.2 +/- 4.9%, P = 0.041 and 20.0 +/- 4.2%, P < 0.001 vs. 26.1 +/- 5.8% in controls) and a further decline was observed in patients with HFrEF (14.7 +/- 6.3%, P < 0.001). Disproportionate left ventricular hypertrophy was a major cause of reduced MEE. Female sex (P < 0.001), a lower BMI (P = 0.001), and advanced age (P = 0.03) were associated with a lower MEE.Conclusion: MEE was reduced in patients with HFrEF, HFmrEF, and HF due to pressure overload and MEE may therefore constitute a treatment target in HF. Patients with LVH, advanced age, female sex, and low BMI had more pronounced reduction in MEE and personalized treatment within these patient subgroups could be relevant.
  •  
2.
  • Hansen, Lea B.S., et al. (författare)
  • A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018, The Author(s). Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres.
  •  
3.
  • Hansson, Nils Henrik, et al. (författare)
  • Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency
  • 2016
  • Ingår i: Journal of Nuclear Cardiology. - : Springer Science and Business Media LLC. - 1071-3581 .- 1532-6551. ; 23:4, s. 670-9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET.METHODS: Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE.RESULTS: LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias -3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness.CONCLUSIONS: Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.
  •  
4.
  • Harms, Hendrik J, et al. (författare)
  • Automatic calculation of myocardial external efficiency using a single 11C-acetate PET scan.
  • 2018
  • Ingår i: Journal of Nuclear Cardiology. - : Springer Science and Business Media LLC. - 1071-3581 .- 1532-6551. ; 25:6, s. 1937-1944
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Myocardial external efficiency (MEE) is defined as the ratio of kinetic energy associated with cardiac work [forward cardiac output (FCO)*mean systemic pressure] and the chemical energy from oxygen consumed (MVO2) by the left ventricular mass (LVM). We developed a fully automated method for estimating MEE based on a single 11C-acetate PET scan without ECG-gating.METHODS AND RESULTS: Ten healthy controls, 34 patients with aortic valve stenosis (AVS), and 20 patients with mitral valve regurgitation (MVR) were recruited in a dual-center study. MVO2 was calculated using washout of 11C -acetate activity. FCO and LVM were calculated automatically using dynamic PET and parametric image formation. FCO and LVM were also obtained using cardiac magnetic resonance (CMR) in all subjects. The correlation between MEEPET-CMR and MEEPET was high (r = 0.85, P < 0.001) without significant bias. MEEPET was 23.6 ± 4.2% for controls and was lowered in AVS (17.2 ± 4.3%, P < 0.001) and in MVR (18.0 ± 5.2%, P = 0.004). MEEPET was strongly associated with both NYHA class (P < 0.001) and the magnitude of valvular dysfunction (mean aortic gradient: P < 0.001, regurgitant fraction: P = 0.009).CONCLUSION: A single 11C-acetate PET yields accurate and automated MEE results on different scanners. MEE might provide an unbiased measurement of the phenotypic response to valvular disease.
  •  
5.
  • Harms, Hendrik Johannes, et al. (författare)
  • Automatic extraction of forward stroke volume using dynamic PET/CT : a dual-tracer and dual-scanner validation in patients with heart valve disease.
  • 2015
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners.METHODS: 35 subjects underwent a dynamic (11)C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic (15)O-water PET and (11)C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase-contrast cardiovascular magnetic resonance (CMR).RESULTS: FSVPET correlated highly with FSVCMR (r = 0.87, slope = 0.90 for scanner I, r = 0.87, slope = 1.65, and r = 0.85, slope = 1.69 for scanner II for (15)O-water and (11)C-acetate, respectively) although a systematic bias was observed for both scanners (p < 0.001 for all). FSV based on (11)C-acetate and (15)O-water correlated highly (r = 0.99, slope = 1.03) with no significant difference between FSV estimates (p = 0.14).CONCLUSIONS: FSV can be obtained automatically using dynamic PET/CT and cluster analysis. Results are almost identical for (11)C-acetate and (15)O-water. A scanner-dependent bias was observed, and a scanner calibration factor is required for multi-scanner studies. Generalization of the method to other tracers and scanners requires further validation.
  •  
6.
  • Hoff, Camilla Molich, et al. (författare)
  • Quantitative and qualitative comparison of Rubidium-82 and Oxygen-15 water cardiac PET.
  • 2024
  • Ingår i: Journal of Nuclear Cardiology. - 1071-3581 .- 1532-6551. ; , s. 101796-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Differences in tracer characteristics may influence the interpretation of positron emission tomography myocardial perfusion imaging (MPI). We compare the reading of MPIs with a low-extraction retention tracer (82Rb) and a high-extraction non-retention tracer (15O-water) in a selected cohort of patients with known coronary artery disease (CAD).METHODS: Thirty-nine patients with known CAD referred to 82Rb MPI due to angina underwent rest and stress imaging with both tracers and experienced MPI readers provided blinded consensus reads of all studies. In addition, a comparison of regional and global quantitative measures of perfusion was performed.RESULTS: The results showed 74 % agreement in the reading of 82Rb and 15O-water MPI for regional reversible ischemia and global disease, and 82 % agreement for regional irreversible ischemia. The 15O-water MPI identified more cases of global disease (n = 12 (15O-water) vs n = 4 (82Rb), p = 0.03), whereas differences in reversible ischemia (n = 22 vs n = 16, p = 0.11) and, irreversible ischemia (n = 8 vs n = 11, p = 0.45) were not significant. The correlation between myocardial blood flow measured using the two tracers was similar to previous studies (R2 = 0.78) with wide limits of agreement (-0.93 to 0.84 ml/g/min).CONCLUSIONS: Agreement between consensus readings of 82Rb and 15O-water MPI was good in patients with known CAD. In this limited size study, no significant differences in the identification of reversible and irreversible ischemia found, whereas 15O-water MPI had a higher positive rate for suspected global disease.
  •  
7.
  • Nejsum, Lene N., et al. (författare)
  • Bidirectional regulation of AQP2 trafficking and recycling : involvement of AQP2-S256 phosphorylation
  • 2005
  • Ingår i: American Journal of Physiology: Renal Physiology. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 288:5, s. F930-F938
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study examined the role of PKA and serine256 (S256) phosphorylation for AQP2 trafficking and recycling using cells transfected with wild-type AQP2 (AQP2-WT) or mutant AQP2 and high-resolution confocal microscopic techniques. In transiently transfected MDCK-C7 cells, stimulation with forskolin induced translocation of AQP2-WT to the plasma membrane. Treatment of AQP2-WT cells with the PKA inhibitor H-89 following forskolin stimulation resulted in internalization of AQP2-WT. Moreover, H-89 treatment of AQP2-S256D (mimicking constitutively phosphorylated AQP2 and hence localized to the plasma membrane) resulted in redistribution of AQP2-S256D to intracellular vesicles, even in the presence of forskolin. Both PGE2 and dopamine stimulation induced endocytosis of AQP2-WT and AQP2-S256D, respectively, in forskolin-stimulated cells. Consistent with this, dopamine in the presence of vasopressin stimulated endocytosis of AQP2 in slices of rat kidney inner medulla without substantial dephosphorylation. In conclusion, these results strongly suggest that 1) S256 phosphorylation is necessary but not sufficient for AQP2 plasma membrane expression, 2) active PKA is required for AQP2 plasma membrane expression, 3) PGE2 and dopamine induce internalization of AQP2 independently of AQP2 dephosphorylation, and 4) preceding activation of cAMP production is necessary for PGE2 and dopamine to cause AQP2 internalization.
  •  
8.
  • Nielsen, Roni, et al. (författare)
  • Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients
  • 2019
  • Ingår i: Circulation. - : LIPPINCOTT WILLIAMS & WILKINS. - 0009-7322 .- 1524-4539. ; 139:18, s. 2129-2141
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Myocardial utilization of 3-hydroxybutyrate (3-OHB) is increased in patients with heart failure and reduced ejection fraction (HFrEF). However, the cardiovascular effects of increased circulating plasma-3-OHB levels in these patients are unknown. Consequently, the authors' aim was to modulate circulating 3-OHB levels in HFrEF patients and evaluate: (1) changes in cardiac output (CO); (2) a potential doseresponse relationship between 3-OHB levels and CO; (3) the impact on myocardial external energy efficiency (MEE) and oxygen consumption (MVO 2); and (4) whether the cardiovascular response differed between HFrEF patients and age-matched volunteers.METHODS: Study 1: 16 chronic HFrEF patients (left ventricular ejection fraction: 37 +/- 3%) were randomized in a crossover design to 3-hour of 3-OHB or placebo infusion. Patients were monitored invasively with a Swan-Ganz catheter and with echocardiography. Study 2: In a doseresponse study, 8 HFrEF patients were examined at increasing 3-OHB infusion rates. Study 3 to 4: 10 HFrEF patients and 10 age-matched volunteers were randomized in a crossover design to 3-hour 3-OHB or placebo infusion. MEE and MVO 2 were evaluated using 11C-acetate positron emission tomography.RESULTS: 3-OHB infusion increased circulating levels of plasma 3-OHB from 0.4 +/- 0.3 to 3.3 +/- 0.4 mM (P< 0.001). CO rose by 2.0 +/- 0.2 L/min (P< 0.001) because of an increase in stroke volume of 20 +/- 2 mL (P< 0.001) and heart rate of 7 +/- 2 beats per minute (bpm) (P< 0.001). Left ventricular ejection fraction increased 8 +/- 1% (P< 0.001) numerically. There was a dose-response relationship with a significant CO increase of 0.3 L/min already at plasma-3-OHB levels of 0.7 mM (P< 0.001). 3-OHB increased MVO 2 without altering MEE. The response to 3-OHB infusion in terms of MEE and CO did not differ between HFrEF patents and age-matched volunteers.CONCLUSIONS: 3-OHB has beneficial hemodynamic effects in HFrEF patients without impairing MEE. These beneficial effects are detectable in the physiological concentration range of circulating 3-OHB levels. The hemodynamic effects of 3-OHB were observed in both HFrEF patients and age-matched volunteers. 3-OHB may potentially constitute a novel treatment principle in HFrEF patients.
  •  
9.
  • Overgaard-Steensen, Christian, et al. (författare)
  • Edelman's equation is valid in acute hyponatremia in a porcine model : plasma sodium concentration is determined by external balances of water and cations
  • 2010
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 298:1, s. R120-R129
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute hyponatremia is a serious condition, which poses major challenges. Of particular importance is what determines plasma sodium concentration ([Na(+)]). Edelman introduced an explicit model to describe plasma [Na(+)] in a population as [Na(+)] = alpha.(exchangeable Na(+) + exchangeable K(+))/(total body water) - beta. Evidence for the clinical utility of the model in the individual and in acute hyponatremia is sparse. We, therefore, investigated how the measured plasma [Na(+)] could be predicted in a porcine model of hyponatremia. Plasma [Na(+)] was estimated from in vivo-determined balances of water, Na(+), and K(+), according to Edelman's equation. Acute hyponatremia was induced with desmopressin acetate and infusion of a 2.5% glucose solution in anesthetized pigs. During 480 min, plasma [Na(+)] and osmolality were reduced from 136 (SD 2) to 120 mmol/l (SD 3) and from 284 (SD 4) to 252 mosmol/kgH(2)O (SD 5), respectively. The following interpretations were made. First, Edelman's model, which, besides dilution, takes into account Na(+) and K(+), fits plasma [Na(+)] significantly better than dilution alone. Second, a common value of alpha = 1.33 (SD 0.08) and beta = -13.04 mmol/l (SD 7.68) for all pigs explains well the plasma [Na(+)] in the individual animal. Third, measured exchangeable Na(+) and calculated exchangeable Na(+) + K(+) per weight in the pigs are close to Edelman's findings in humans, whereby the methods are cross-validated. In conclusion, plasma [Na(+)] can be explained in the individual animal by external balances, according to Edelman's construct in acute hyponatremia.
  •  
10.
  • Overgaard-Steensen, Christian, et al. (författare)
  • Regional differences in osmotic behavior in brain during acute hyponatremia : an in vivo MRI-study of brain and skeletal muscle in pigs
  • 2010
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 299:2, s. R521-R532
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain edema is suggested to be the principal mechanism underlying the symptoms in acute hyponatremia. Identification of the mechanisms responsible for global and regional cerebral water homeostasis during hyponatremia is, therefore, of utmost importance. To examine the osmotic behavior of different brain regions and muscles, in vivo-determined water content (WC) was related to plasma sodium concentration ([Na(+)]) and brain/muscle electrolyte content. Acute hyponatremia was induced with desmopressin acetate and infusion of a 2.5% glucose solution in anesthetized pigs. WC in different brain regions and skeletal muscle was estimated in vivo from T(1) maps determined by magnetic resonance imaging (MRI). WC, expressed in gram water per 100 g dry weight, increased significantly in slices of the whole brain [342(SD = 14) to 363(SD = 21)] (6%), thalamus [277(SD = 13) to 311(SD = 24)] (12%) and white matter [219(SD = 7) to 225(SD = 5)] (3%). However, the WC increase in the whole brain and white mater WC was less than expected from perfect osmotic behavior, whereas in the thalamus, the water increase was as expected. Brain sodium content was significantly reduced. Muscle WC changed passively with plasma [Na(+)]. WC determined with deuterium dilution and tissue lyophilzation correlated well with MRI-determined WC. In conclusion, acute hyponatremia induces brain and muscle edema. In the brain as a whole and in the thalamus, regulatory volume decrease (RVD) is unlikely to occur. However, RVD may, in part, explain the observed lower WC in white matter. This may play a potential role in osmotic demyelination.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy