SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Franchin A.) "

Sökning: WFRF:(Franchin A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keskinen, H., et al. (författare)
  • Evolution of Nanoparticle Composition in CLOUD in Presence of Sulphuric Acid, Ammonia and Organics
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 291-294
  • Konferensbidrag (refereegranskat)abstract
    • In this study, we investigate the composition of nucleated nanoparticles formed from sulphuric acid, ammonia, amines, and oxidised organics in the CLOUD chamber experiments at CERN. The investigation is carried out via analysis of the particle hygroscopicity (size range of 15-63 nm), ethanol affinity (15-50nm), oxidation state (<50 nm), and ion composition (few nanometers). The organic volume fraction of particles increased with an increase in particle diameter in presence of the sulphuric acid, ammonia and organics. Vice versa, the sulphuric acid volume fraction decreased when the particle diameter increased. The results provide information on the size-dependent composition of nucleated aerosol particles.
  •  
2.
  •  
3.
  • Ahlm, Lars, et al. (författare)
  • Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber
  • 2016
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 50:10, s. 1017-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1-1.3 for a 2nm particle and DMA gas-phase mixing ratios between 3.5 and 80 pptv. These ratios agree well with observations by an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer. Simulations with MABNAG, direct observations of the composition of clusters <2nm, and indirect observations of the particle composition indicate that the acidity of the nucleated particles decreases as they grow from approximate to 1 to 20nm. However, MABNAG predicts less acidic particles than suggested by the indirect estimates at 10nm diameter using the nano-HTDMA measurements, and less acidic particles than observed by a thermal desorption chemical ionization mass spectrometer (TDCIMS) at 10-30nm. Possible explanations for these discrepancies are discussed.
  •  
4.
  • Steffan, Adrian, et al. (författare)
  • Validation of an open source, remote web-based eye-tracking method (WebGazer) for research in early childhood
  • 2024
  • Ingår i: Infancy. - 1525-0008 .- 1532-7078. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring eye movements remotely via the participant's webcam promises to be an attractive methodological addition to in-person eye-tracking in the lab. However, there is a lack of systematic research comparing remote web-based eye-tracking with in-lab eye-tracking in young children. We report a multi-lab study that compared these two measures in an anticipatory looking task with toddlers using WebGazer.js and jsPsych. Results of our remotely tested sample of 18-27-month-old toddlers (N=125) revealed that web-based eye-tracking successfully captured goal-based action predictions, although the proportion of the goal-directed anticipatory looking was lower compared to the in-lab sample (N=70). As expected, attrition rate was substantially higher in the web-based (42%) than the in-lab sample (10%). Excluding trials based on visual inspection of the match of time-locked gaze coordinates and the participant's webcam video overlayed on the stimuli was an important preprocessing step to reduce noise in the data. We discuss the use of this remote web-based method in comparison with other current methodological innovations. Our study demonstrates that remote web-based eye-tracking can be a useful tool for testing toddlers, facilitating recruitment of larger and more diverse samples; a caveat to consider is the larger drop-out rate.
  •  
5.
  • Kirkby, Jasper, et al. (författare)
  • Ion-induced nucleation of pure biogenic particles
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood(1). Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours(2). It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere(3,4), and that ions have a relatively minor role(5). Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded(6,7). Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of a-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy