SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fraternale Federico) "

Sökning: WFRF:(Fraternale Federico)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fraternale, Federico, et al. (författare)
  • Exploring turbulence from the Sun to the local interstellar medium : Current challenges and perspectives for future space missions
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind-local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.
  •  
2.
  • Quijia, Paulina, et al. (författare)
  • Comparing turbulence in a Kelvin-Helmholtz instability region across the terrestrial magnetopause
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 503:4, s. 4815-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of turbulence observed within the plasma originating from the magnetosheath and the magnetospheric boundary layer, which have been entrained within vortices driven by the Kelvin-Helmholtz Instability (KHI), are compared. The goal of such a study is to determine similarities and differences between the two different regions. In particular, we study spectra, intermittency and the third-order moment scaling, as well as the distribution of a local energy transfer rate proxy. The analysis is performed using the Magnetospheric Multiscale data from a single satellite that crosses longitudinally the KHI. Two sets of regions, one set containing predominantly magnetosheath plasma and the other containing predominantly magnetospheric plasma, are analysed separately, thus allowing us to explore turbulence properties in two portions of very different plasma samples. Results show that the dynamics in the two regions is different, with the boundary layer plasma presenting a shallower spectra and larger energy transfer rate, indicating an early stage of turbulence. In both regions, the effect of the KHI is evidenced.
  •  
3.
  • Sorriso-Valvo, Luca, et al. (författare)
  • Sign Singularity of the Local Energy Transfer in Space Plasma Turbulence
  • 2019
  • Ingår i: Frontiers in Physics. - : FRONTIERS MEDIA SA. - 2296-424X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In weakly collisional space plasmas, the turbulent cascade provides most of the energy that is dissipated at small scales by various kinetic processes. Understanding the characteristics of such dissipative mechanisms requires the accurate knowledge of the fluctuations that make energy available for conversion at small scales, as different dissipation processes are triggered by fluctuations of a different nature. The scaling properties of different energy channels are estimated here using a proxy of the local energy transfer, based on the third-order moment scaling law for magnetohydrodynamic turbulence. In particular, the sign-singularity analysis was used to explore the scaling properties of the alternating positive-negative energy fluxes, thus providing information on the structure and topology of such fluxes for each of the different type of fluctuations. The results show the highly complex geometrical nature of the flux, and that the local contributions associated with energy and cross-helicity non-linear transfer have similar scaling properties. Consequently, the fractal properties of current and vorticity structures are similar to those of the Alfvenic fluctuations.
  •  
4.
  • Sorriso-Valvo, Luca, et al. (författare)
  • Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 122:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The description of the local turbulent energy transfer and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission together provide a formidable tool to explore the cross-scale connection between the fluid-scale energy cascade and plasma processes at subion scales. When the small-scale energy transfer is dominated by Alfvenic, correlated velocity, and magnetic field fluctuations, beams of accelerated particles are more likely observed. Here, for the first time, we report observations suggesting the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy