SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Freeze Hudson) "

Sökning: WFRF:(Freeze Hudson)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtson, Per, et al. (författare)
  • Serum transferrin carrying the xeno-tetrasaccharide NeuAc-Gal-GlcNAc2 is a biomarker of ALG1-CDG.
  • 2016
  • Ingår i: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 39:1, s. 107-114
  • Tidskriftsartikel (refereegranskat)abstract
    • ALG1-CDG (formerly CDG-Ik) is a subtype of congenital disorders of glycosylation (CDG) where the genetic defect disrupts the synthesis of the lipid-linked oligosaccharide precursor required for N-glycosylation. The initial step in the investigation for these disorders involves the demonstration of hypoglycosylated serum transferrin (TF). There are no specific biomarkers of this CDG subtype known to date. An LC/MS approach was used to analyze sera from patients with ALG1-CDG, PMM2-CDG, suspected CDG, and individuals with alcohol abuse. We show mass spectrometric data combined with data from enzymatic digestions that suggest the presence of a tetrasaccharide consisting of two N-acetylglucosamines, one galactose, and one sialic acid, appearing on serum TF, is a biomarker of this particular CDG subtype. This is the first time analysis of serum TF can suggest a specific CDG type I subtype and we suggest this tetrasaccharide be used in the clinic to guide the ALG1-CDG diagnostic process.
  •  
2.
  • Bode, Lars, et al. (författare)
  • Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function
  • 2008
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 118:1, s. 229-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-gamma, TNF-alpha, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate- or syndecan-1-deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-gamma, TNF-alpha, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients.
  •  
3.
  • Eklund, Erik, et al. (författare)
  • The congenital disorders of glycosylation: a multifaceted group of syndromes.
  • 2006
  • Ingår i: NeuroRx. - : Springer Science and Business Media LLC. - 1545-5343. ; 3:2, s. 63-254
  • Tidskriftsartikel (refereegranskat)abstract
    • The congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic syndromes with a wide symptomatology and severity. They all stem from deficient N-glycosylation of proteins. To date the group contains 18 different subtypes: 12 of Type I (disrupted synthesis of the lipid-linked oligosaccharide precursor) and 6 of Type II (malfunctioning trimming/processing of the protein-bound oligosaccharide). Main features of CDG involve psychomotor retardation; ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features, including inverted nipples and subcutaneous fat pads; and strabismus. No treatment currently is available for the vast majority of these syndromes (CDG-Ib and CDG-IIc are exceptions), even though attempts to synthesize drugs for the most common subtype, CDG-Ia, have been made. In this review we will discuss the individual syndromes, with focus on their neuronal involvement, available and possible treatments, and future directions.
  •  
4.
  • Freeze, Hudson H., et al. (författare)
  • Neurological Aspects of Human Glycosylation Disorders
  • 2015
  • Ingår i: Annual Review of Neuroscience. - : Annual Reviews. - 0147-006X .- 1545-4126. ; 38, s. 105-105
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
  •  
5.
  • Freeze, Hudson H., et al. (författare)
  • Neurology of inherited glycosylation disorders
  • 2012
  • Ingår i: Lancet Neurology. - 1474-4465. ; 11:5, s. 453-466
  • Forskningsöversikt (refereegranskat)abstract
    • Congenital disorders of glycosylation comprise most of the nearly 70 genetic disorders known to be caused by impaired synthesis of glycoconjugates. The effects are expressed in most organ systems, and most involve the nervous system. Typical manifestations include structural abnormalities (eg, rapidly progressive cerebellar atrophy), myopathies (including congenital muscular dystrophies and limb-girdle dystrophies), strokes and stroke-like episodes, epileptic seizures, developmental delay, and demyelinating neuropathy. Patients can also have neurological symptoms associated with coagulopathies, immune dysfunction with or without infections, and cardiac, renal, or hepatic failure, which are common features of glycosylation disorders. The diagnosis of congenital disorder of glycosylation should be considered for any patient with multisystem disease and in those with more specific phenotypic features. Measurement of concentrations of selected glycoconjugates can be used to screen for many of these disorders, and molecular diagnosis is becoming more widely available in clinical practice. Disease-modifying treatments are available for only a few disorders, but all affected individuals benefit from early diagnosis and aggressive management.
  •  
6.
  • Ng, Bobby G, et al. (författare)
  • ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients.
  • 2016
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794.
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over one hundred genes leading to impaired protein or lipid glycosylation. ALG1 encodes a β1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate (DLO) required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date thirteen mutations in eighteen patients from fourteen families have been described with varying degrees of clinical severity. We identified and characterized thirty-nine previously unreported cases of ALG1-CDG from thirty-two families and add twenty-six new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all twenty-seven patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder. This article is protected by copyright. All rights reserved.
  •  
7.
  • Ng, Bobby G., et al. (författare)
  • DPAGT1 deficiency with encephalopathy (DPAGT1-CDG) : Clinical and genetic description of 11 new patients
  • 2018
  • Ingår i: JIMD Reports. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 2192-8312 .- 2192-8304. ; 44, s. 85-92
  • Bokkapitel (refereegranskat)abstract
    • Pathogenic mutations in DPAGT1 cause a rare type of a congenital disorder of glycosylation termed DPAGT1-CDG or, alternatively, a milder version with only myasthenia known as DPAGT1-CMS. Fourteen disease-causing mutations in 28 patients from 10 families have previously been reported to cause the systemic form, DPAGT1-CDG. We here report on another 11 patients from 8 families and add 10 new mutations. Most patients have a very severe disease course, where common findings are pronounced muscular hypotonia, intractable epilepsy, global developmental delay/intellectual disability, and early death. We also present data on three affected females that are young adults and have a somewhat milder, stable disease. Our findings expand both the molecular and clinical knowledge of previously published data but also widen the phenotypic spectrum of DPAGT1-CDG.
  •  
8.
  • Ng, Bobby G, et al. (författare)
  • Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions
  • 2020
  • Ingår i: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 43:6, s. 1333-1348
  • Tidskriftsartikel (refereegranskat)abstract
    • Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals. © 2020 SSIEM
  •  
9.
  • Shah, Rameen, et al. (författare)
  • ALG13-Congenital Disorder of Glycosylation (ALG13-CDG) : Updated clinical and molecular review and clinical management guidelines
  • 2024
  • Ingår i: Molecular Genetics and Metabolism. - 1096-7192. ; 142:2
  • Forskningsöversikt (refereegranskat)abstract
    • ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients’ symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.
  •  
10.
  • Stoka, Veronika, et al. (författare)
  • Lysosomal protease pathways to apoptosis - Cleavage of Bid, not pro-caspases, is the most likely route
  • 2001
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 276:5, s. 3149-3157
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the mechanism of lysosome-mediated cell death using purified recombinant pro-apoptotic proteins, and cell-free extracts from the human neuronal progenitor cell line NT2, Potential effectors were either isolated lysosomes or purified lysosomal proteases. Purified lysosomal cathepsins B, H, K, L, S, and X or an extract of mouse lysosomes did not directly activate either recombinant caspase zymogens or caspase zymogens present in an NT2 cytosolic extract to any significant extent. In contrast, a cathepsin L-related protease from the protozoan parasite Trypanosana cruzi, cruzipain, showed a measurable caspase activation rate. This demonstrated that members of the papain family can directly activate caspases but that mammalian lysosomal members of this family may have been negatively selected for caspase activation to prevent inappropriate induction of apoptosis, Given the lack of evidence for a direct role in caspase activation by lysosomal proteases, we hypothesized that an indirect mode of caspase activation may involve the Bcl-2 family member Bid. In support of this, Bid was cleaved in the presence of lysosomal extracts, at a site six residues downstream from that seen for pathways involving capase 8, Incubation of mitochondria with Bid that had been cleaved by lysosomal extracts resulted in cytochrome c release. Thus, cleavage of Bid may represent a mechanism by which proteases that have leaked from the lysosomes can precipitate cytochrome c release and subsequent caspase activation. This is supported by the finding that cytosolic extracts from mice ablated in the bid gene are impaired in the ability to release cytochrome c in response to lysosome extracts, Together these data suggest that Bid represents a sensor that allows cells to initiate apoptosis in response to widespread adventitious proteolysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy