SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Freixa Anna) "

Sökning: WFRF:(Freixa Anna)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attermeyer, Katrin, et al. (författare)
  • Carbon dioxide fluxes increase from day to night across European streams
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1mmolm(-2) h(-1) at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams. Diel patterns can greatly impact total stream carbon dioxide emissions, with 39% greater carbon dioxide flux during the night-time relative to the day-time, according to a study of 34 streams across Europe.
  •  
2.
  • Freixa, Anna, et al. (författare)
  • River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs
  • 2020
  • Ingår i: FEMS Microbiology Ecology. - : OXFORD UNIV PRESS. - 0168-6496 .- 1574-6941. ; 96:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites. On the other hand, bacterial community composition and water quality at the upper reach was still altered 1 km from the WWTP effluent. Our results indicate that biofilms in the upstream sites were more sensitive to the effect of WWTPs due to a lower degree of tolerance after a disturbance than communities located in more anthropogenically impacted sites.
  •  
3.
  • Nagler, Magdalena, et al. (författare)
  • Abundance and biogeography of methanogenic and methanotrophic microorganisms across European streams
  • 2021
  • Ingår i: Journal of Biogeography. - : John Wiley & Sons. - 0305-0270 .- 1365-2699. ; 48:4, s. 947-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Although running waters are getting recognized as important methane sources, large‐scale geographical patterns of microorganisms controlling the net methane balance of streams are still unknown. Here we aim at describing community compositions of methanogenic and methanotrophic microorganisms at large spatial scales and at linking their abundances to potential sediment methane production (PMP) and oxidation rates (PMO).Location: The study spans across 16 European streams from northern Spain to northern Sweden and from western Ireland to western Bulgaria.Taxon: Methanogenic archaea and methane‐oxidizing microorganisms.Methods: To provide a geographical overview of both groups in a single approach, microbial communities and abundances were investigated via 16S rRNA gene sequencing, extracting relevant OTUs based on literature; both groups were quantified via quantitative PCR targeting mcrA and pmoA genes and studied in relation to environmental parameters, sediment PMP and PMO, and land use.Results: Diversity of methanogenic archaea was higher in warmer streams and of methanotrophic communities in southern sampling sites and in larger streams. Anthropogenically altered, warm and oxygen‐poor streams were dominated by the highly efficient methanogenic families Methanospirillaceae, Methanosarcinaceae and Methanobacteriaceae, but did not harbour any specific methanotrophic organisms. Contrastingly, sediment communities in colder, oxygen‐rich waters with little anthropogenic impact were characterized by methanogenic Methanosaetaceae, Methanocellaceae and Methanoflorentaceae and methanotrophic Methylococcaceae and Cd. Methanoperedens. Representatives of the methanotrophic Crenotrichaceae and Methylococcaceae as well as the methanogenic Methanoregulaceae were characteristic for environments with larger catchment area and higher discharge. PMP increased with increasing abundance of methanogenic archaea, while PMO rates did not show correlations with abundances of methane‐oxidizing bacteria.Main conclusions: Methanogenic and methanotrophic communities grouping into three habitat types suggest that future climate‐ and land use changes may influence the prevailing microbes involved in the large‐scale stream‐related methane cycle, favouring the growth of highly efficient hydrogenotrophic methane producers. Based on these results, we expect global change effect on PMP rates to especially impact rivers adjacent to anthropogenically disturbed land uses.
  •  
4.
  • Pastor, Ada, et al. (författare)
  • Local and regional drivers of headwater streams metabolism : insights from the first AIL collaborative project
  • 2017
  • Ingår i: LIMNETICA. - : Asociacion Iberica de Limnologia. - 0213-8409 .- 1989-1806. ; 36:1, s. 67-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams play a key role in the global biogeochemical cycles, processing material from adjacent terrestrial systems and transporting it downstream. However, the drivers of stream metabolism, especially those acting at broad spatial scales, are still not well understood. Moreover, stream metabolism can be affected by hydrological changes associated with seasonality, and thus, assessing the temporality of metabolic rates is a key question to understand stream function. This study aims to analyse the geographical and temporal patterns in stream metabolism and to identify the main drivers regulating the whole ecosystem metabolic rates at local and regional scales. Using a coordinated distributed experiment, we studied ten headwaters streams located across five European ecoregions during summer and fall 2014. We characterized the magnitude and variability of gross primary production (GPP) and ecosystem respiration (ER) with the open-channel method. Moreover, we examined several climatic, geographical, hydrological, morphological, and physicochemical variables that can potentially control stream metabolic rates. Daily rates of stream metabolism varied considerately across streams, with GPP and ER ranging from 0.06 to 4.33 g O-2 m(-2) d(-1) and from 0.72 to 14.20 g O-2 m(-2) d(-1), respectively. All streams were highly heterotrophic (P/R < 1), except the southernmost one. We found that the drier climates tended to have the highest GPP, while humid regions presented the highest ER. Between the sampling periods no statistical differences were found. Partial-least squares models (PLS) explained similar to 80% of the variance in GPP and ER rates across headwater streams and included both local and regional variables. Rates of GPP varied primarily in response to the local variables, such as streambed substrate and stream water temperature. In contrast, regional variables, such as the mean annual temperature or the land use of the catchment, had more relevance to explain ER. Overall, our results highlight that stream metabolism depends on both local and regional drivers and show the positive experience of a young network of researchers to assess scientific challenges across large-scale geographic areas.
  •  
5.
  • Attermeyer, Katrin, et al. (författare)
  • Organic Carbon Processing During Transport Through Boreal Inland Waters : Particles as Important Sites
  • 2018
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 123:8, s. 2412-2428
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation and transformation of organic carbon (C) in inland waters result in significant CO2 emissions from inland waters. Even though most of the C in inland waters occurs as dissolved organic carbon (DOC), studies on particulate organic carbon (POC) and how it influences the overall reactivity of organic C in transport are still scarce. We sampled 30 aquatic ecosystems following an aquatic continuum including peat surface waters, streams, rivers, and lakes. We report DOC and POC degradation rates, relate degradation patterns to environmental data across these systems, and present qualitative changes in dissolved organic matter and particulate organic matter during degradation. Microbial degradation rates of POC were approximately 15 times higher compared to degradation of DOC, with POC half-lives of only 17 +/- 3 (mean +/- SE) days across all sampled aquatic ecosystems. Rapid POC decay was accompanied by a shift in particulate C: N ratios, whereas dissolved organic matter composition did not change at the time scale of incubations. The faster degradation of the POC implies a constant replenishment to sustain natural POC concentrations. We suggest that degradation of organic matter transported through the inland water continuum might occur to a large extent via transition of DOC into more rapidly cycling POC in nature, for example, triggered by light. In this way, particles would be a dominant pool of organic C processing across the boreal aquatic continuum, partially sustained by replenishment via flocculation of DOC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy