SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frerking M.) "

Sökning: WFRF:(Frerking M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
2.
  • Gulkis, S., et al. (författare)
  • Millimeter and submillimeter measurements of asteroid (2867) Steins during the Rosetta fly-by
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:9, s. 1077-1087
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency Rosetta Spacecraft passed within 803 km of the main belt asteroid (2867) Steins on 5 September 2008. The Rosetta Spacecraft carries a number of scientific instruments including a millimeter and submillimeter radiometer and spectrometer. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.53 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients. A 4096 channel CTS (chirp transform spectrometer) having 180 MHz total bandwidth and similar to 44 kHz resolution is also connected to the submillimeter receiver. We present the continuum observations of asteroid (2867) Steins obtained during the fly-by with the MIRO instrument. Spectroscopic data were also collected during the fly-by using the MIRO spectrometer fixed-tuned to rotational lines of several molecules. Results of the spectroscopic investigation will be the topic of a separate publication. Comparative thermal models and radiative transfer calculations for Steins are presented. Emissivities of Steins were determined to be 0.6-0.7 and 0.85-0.9 at wavelengths of 0.53 and 1.6 mm, respectively. The thermal inertia of Steins was estimated to be in the range 450-850 J/(m(2) s(0.5) K). Assuming that the emissivity of Steins is determined by the Fresnel reflection coefficients of the surface material, the area-averaged dielectric constant of the surface material is in the range 4-20. These values are rock-like, and are unlike the powdered-regolith surface of the Moon.
  •  
3.
  • Räisänen, Antti, et al. (författare)
  • A single barrier varactor quintupler at 170 GHz
  • 1995
  • Ingår i: IEEE Transactions on Microwave Theory and Techniques. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9480 .- 1557-9670. ; 43:3, s. 685-688
  • Tidskriftsartikel (refereegranskat)abstract
    • InGaAs-InAlAs single-barrier varactor (SBV) diodes are tested as frequency quintuplers. The diodes were tested in a crossed-waveguide structure and provided output frequencies between 148 and 187 GHz. The highest observed flange-to-flange efficiency was 0.78% at an output frequency of 172 GHz. This is nearly four times greater than the best quintupler efficiency obtained for previous SBV varactors made from the GaAs-AlGaAs materials system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy