SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Freytag Bernd Dr.) "

Sökning: WFRF:(Freytag Bernd Dr.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmad, A., et al. (författare)
  • Properties of self-excited pulsations in 3D simulations of AGB stars and red supergiants
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The characteristic variability of cool giants and supergiants is attributed to a combination of stellar pulsation and large-scale convective flows. Full 3D radiation-hydrodynamical modelling is an essential tool for understanding the nature of these dynamical processes. The parameter space in our 3D model grid of red giants has expanded in recent years. These models can provide many insights on the nature and properties of the pulsations, including the interplay between convection and pulsations.Aims. We treat 3D dynamical models of asymptotic giant branch (AGB) stars and red supergiants (with current masses 1 M-circle dot <= M-* <= 12 M-circle dot) similar to observational data. We aim to explore the relation between stellar parameters and the properties of the self-excited pulsations.Methods. Output from global 'star-in-a-box' models computed with the CO5BOLD radiation-hydrodynamics code were analysed, particularly in regards to the pulsation properties, to find possible correlations with input and emergent stellar parameters. The fast Fourier transform was applied to spherically averaged mass flows to identify possible radial pulsation periods beneath the photosphere of the modelled stars. Stellar parameters were investigated for correlations with the extracted pulsation periods.Results. We find that the pulsation periods varied with the stellar parameters in good agreement with the current expectations. The pulsation periods follow Ritter's period-mean density relation well and our AGB models agree with period-luminosity relations derived from observations. A mass estimate formula was derived from the 3D models, relating the stellar mass to the fundamental mode pulsation period and the stellar radius.Conclusions. While the non-linearity of the interplay between the self-excited pulsations and the self-consistent convection complicates analyses, the resulting correlations are in good agreement with respect to current theoretical and observational understandings.
  •  
2.
  • Chiavassa, A., et al. (författare)
  • Optical interferometry and Gaia measurement uncertainties reveal the physics of asymptotic giant branch stars
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Asymptotic giant branch (AGB) stars are cool luminous evolved stars that are well observable across the Galaxy and populating Gaia data. They have complex stellar surface dynamics, which amplifies the uncertainties on stellar parameters and distances.Aims. On the AGB star CL Lac, it has been shown that the convection-related variability accounts for a substantial part of the Gaia DR2 parallax error. We observed this star with the MIRC-X beam combiner installed at the CHARA interferometer to detect the presence of stellar surface inhomogeneities.Methods. We performed the reconstruction of aperture synthesis images from the interferometric observations at different wavelengths. Then, we used 3D radiative hydrodynamics (RHD) simulations of stellar convection with CO5BOLD and the post-processing radiative transfer code OPTIM3D to compute intensity maps in the spectral channels of MIRC-X observations. Then, we determined the stellar radius using the average 3D intensity profile and, finally, compared the 3D synthetic maps to the reconstructed ones focusing on matching the intensity contrast, the morphology of stellar surface structures, and the photocentre position at two different spectral channels, 1.52 and 1.70 mu m, simultaneously.Results. We measured the apparent diameter of CL Lac at two wavelengths (3.299 0.005 mas and 3.053 +/- 0.006 mas at 1.52 and 1.70 mu m, respectively) and recovered the radius (R = 307 +/- 41 and R = 284 +/- 38 R-circle dot) using a Gaia parallax. In addition to this, the reconstructed images are characterised by the presence of a brighter area that largely affects the position of the photocentre. The comparison with 3D simulation shows good agreement with the observations both in terms of contrast and surface structure morphology, meaning that our model is adequate for explaining the observed inhomogenities.Conclusions. This work confirms the presence of convection-related surface structures on an AGB star of Gaia DR2. Our result will help us to take a step forward in exploiting Gaia measurement uncertainties to extract the fundamental properties of AGB stars using appropriate RHD simulations.
  •  
3.
  • Chiavassa, A., et al. (författare)
  • Probing red supergiant dynamics through photo-center displacements measured by Gaia
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 661
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Red supergiant (RSGs) are cool massive stars in a late phase of their evolution when the stellar envelope becomes fully convective. They are the brightest stars in the universe at infrared light and can be detected in galaxies far beyond the Local Group, allowing for accurate determination of chemical composition of galaxies. The study of their physical properties is extremely important for various phenomena including the final fate of massive stars as type II supernovae and gravitational wave progenitors.Aims: We explore the well-studied nearby young stellar cluster chi Per, which contains a relatively large population of RSG stars. Using Gaia EDR3 data, we find the distance of the cluster (d & x2004;=& x2004;2.260 +/- 0.020 kpc) from blue main sequence stars and compare with RSG parallax measurements analysing the parallax uncertainties of both groups. We then investigate the variability of the convection-related surface structure as a source for parallax measurement uncertainty.Methods: We use state-of-the-art three-dimensional radiative hydrodynamics simulations of convection with CO5BOLD and the post-processing radiative transfer code OPTIM3D to compute intensity maps in the Gaia G photometric system. We calculate the variabiltiy, as a function of time, of the intensity-weighted mean (or the photo-center) from the synthetic maps. We then select the RSG stars in the cluster and compare their uncertainty on parallaxes to the predictions of photocentre displacements.Results: The synthetic maps of RSG show extremely irregular and temporal variable surfaces due to convection-related dynamics. Consequentially, the position of the photo-center varies during Gaia measurements between 0.033 and 0.130 AU (approximate to 1 to approximate to 5% of the corresponding simulation stellar radius). We argue that the variability of the convection-related surface structures accounts for a substantial part of the Gaia EDR3 parallax error of the RSG sample of chi Per.Conclusions: We suggest that the variation of the uncertainty on Gaia parallax could be exploited quantitatively using appropriate RHD simulations to extract, in a unique way, important information about the stellar dynamics and parameters of RSG stars.
  •  
4.
  • Chiavassa, A., et al. (författare)
  • The extended atmosphere and circumstellar environment of the cool evolved star VX Sagittarii as seen by MATISSE star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification.Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment.Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3-4 mu m), M (4.5-5 mu m), and N (8-13 mu m) bands. We reconstructed monochromatic images using the MIRA software. We used 3D radiation-hydrodynamics simulations carried out with (COBOLD)-B-5 and a uniform disc model to estimate the apparent diameter and interpret the stellar surface structures. Moreover, we employed the radiative transfer codes OPTIM3D and RADMC3D to compute the spectral energy distribution for the L, M, and N bands, respectively.Results. MATISSE observations unveil, for the first time, the morphology of VX Sgr across the L, M, and N bands. The reconstructed images show a complex morphology with brighter areas whose characteristics depend on the wavelength probed. We measured the angular diameter as a function of the wavelength and showed that the photospheric extent in the L and M bands depends on the opacity through the atmosphere. In addition to this, we also concluded that the observed photospheric inhomogeneities can be interpreted as convection-related surface structures. The comparison in the N band yielded a qualitative agreement between the N-band spectrum and simple dust radiative transfer simulations. However, it is not possible to firmly conclude on the interpretation of the current data because of the difficulty in constraing the model parameters using the limited accuracy of our absolute flux calibration.Conclusions. MATISSE observations and the derived reconstructed images unveil the appearance of VX Sgr's stellar surface and circumstellar environment across a very large spectral domain for the first time.
  •  
5.
  • Climent, J. B., et al. (författare)
  • VLTI-PIONIER imaging of the red supergiant V602 Carinae
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Red supergiant stars possess surface features and extended molecular atmospheres. Photospheric convection may be a crucial factor of the levitation of the outer atmospheric layers. However, the mechanism responsible is still poorly understood.Aims. We image the stellar surface of V602 Carinae (V602 Car) to constrain the morphology and contrast of the surface features and of the extended atmospheric layers.Methods. We observed V602 Car with the Very Large Telescope Interferometer PIONIER instrument (1.53-1.78 mu m) between May and July 2016, and April and July 2019 with different telescope configurations. We compared the image reconstructions with 81 temporal snapshots of 3D radiative-hydrodynamics (RHD) (COBOLD)-B-5 simulations in terms of contrast and morphology, using the Structural Similarity Index.Results. The interferometric data are compatible with an overall spherical disk of angular diameter 4.4 0.2 mas, and an extended molecular layer. In 2016, the reconstructed image reveals a bright arc-like feature toward the northern rim of the photospheric surface. In 2019, an arc-like feature is seen at a different orientation and a new peak of emission is detected on the opposite side. The contrasts of the reconstructed surface images are 11% +/- 2% and 9% +/- 2% for 2016 and 2019, respectively. The morphology and contrast of the two images are consistent with 3D RHD simulations, within our achieved spatial resolution and dynamic range. The extended molecular layer contributes 10-13% of the total flux with an angular diameter of 6-8 mas. It is present but not clearly visible in the reconstructed images because it is close to the limits of the achieved dynamic range. The presence of the molecular layer is not reproduced by the 3D RHD simulations.Conclusions. 3D RHD simulations predict substructures similar to the observed surface features of V602 Car at two different epochs. We interpret the structure on the stellar surface as being related to instationary convection. This structure is further convolved to larger observed patches on the stellar surface with our observational spatial resolution. Even though the simulations reproduce the observed features on the stellar surface, convection alone may not be the only relevant process that is levitating the atmosphere.
  •  
6.
  • Cukanovaite, Elena, et al. (författare)
  • 3D spectroscopic analysis of helium-line white dwarfs
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 501:4, s. 5274-5293
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present corrections to the spectroscopic parameters of DB and DBA white dwarfs with -10.0 <= log(H/He) <= -2.0, 7.5 <= log g <= 9.0, and less than or similar to T-eff less than or similar to 34 000 K, based on 282 3D atmospheric models calculated with the (COBOLD)-B-5 radiation-hydrodynamics code. These corrections arise due to a better physical treatment of convective energy transport in 3D models when compared to the previously available 1D model atmospheres. By applying the corrections to an existing Sloan Digital Sky Survey (SDSS) sample of DB and DBA white dwarfs, we find significant corrections both for effective temperature and surface gravity. The 3D log g corrections are most significant for T-eff less than or similar to 18 000 K, reaching up to -0.20 dex at log g = 8.0. However, in this low effective temperature range, the surface gravity determined from the spectroscopic technique can also be significantly affected by the treatment of the neutral van der Waals line broadening of helium and by non-ideal effects due to the perturbation of helium by neutral atoms. Thus, by removing uncertainties due to 1D convection, our work showcases the need for improved description of microphysics for DB and DBA model atmospheres. Overall, we find that our 3D spectroscopic parameters for the SDSS sample are generally in agreement with Gaia Data Release 2 absolute fluxes within 1 sigma-3 sigma for individual white dwarfs. By comparing our results to DA white dwarfs, we determine that the precision and accuracy of DB/DBA atmospheric models are similar. For ease of user application of the correction functions, we provide an example PYTHON code.
  •  
7.
  • Cukanovaite, E., et al. (författare)
  • Calibration of the mixing-length theory for structures of helium-dominated atmosphere white dwarfs
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 490:1, s. 1010-1025
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a calibration of the mixing-length parameter at the bottom boundary of the convection zone for helium-dominated atmospheres of white dwarfs. This calibration is based on a grid of 3D DB (pure-helium) and DBA (helium-dominated with traces of hydrogen) model atmospheres computed with the CO5BOLD radiation-hydrodynamics code, and a grid of 1D DB and DBA envelope structures. The 3D models span a parameter space of hydrogen-to-helium abundances in the range -10.0 <= log (H/He) <= -2.0, surface gravities in the range 7.5 <= log g <= 9.0, and effective temperatures in the range 12 000K less than or similar to T-eff less than or similar to 34 000 K. The 1D envelopes cover a similar atmospheric parameter range, but are also calculated with different values of the mixing-length parameter, namely 0.4 <= ML2/alpha <= 1.4. The calibration is performed based on two definitions of the bottom boundary of the convection zone: the Schwarzschild and the zero convective flux boundaries. Thus, our calibration is relevant for applications involving the bulk properties of the convection zone including its total mass, which excludes the spectroscopic technique. Overall, the calibrated ML2/alpha is smaller than what is commonly used in evolutionary models and theoretical determinations of the blue edge of the instability strip for pulsating DB and DBA stars. With calibrated ML2/alpha we are able to deduce more accurate convection zone sizes needed for studies of planetary debris mixing and dredge-up of carbon from the core. We highlight this by calculating examples of metal-rich 3D DBAZ models and finding their convection zone masses. Mixing-length calibration represents the first step of in-depth investigations of convective overshoot in white dwarfs with helium-dominated atmospheres.
  •  
8.
  • Cunningham, Tim, et al. (författare)
  • Convective overshoot and macroscopic diffusion in pure-hydrogen-atmosphere white dwarfs
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 488:2, s. 2503-2522
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a theoretical description of macroscopic diffusion caused by convective overshoot in pure-hydrogen DA white dwarfs using 3D, closed-bottom, radiation hydrodynamics (COBOLD)-B-5 simulations. We rely on a new grid of deep 3D white dwarf models in the temperature range 11 400 <= T-eff <= 18 000 K where tracer particles and a tracer density are used to derive macroscopic diffusion coefficients driven by convective overshoot. These diffusion coefficients are compared to microscopic diffusion coefficients from 1D structures. We find that the mass of the fully mixed region is likely to increase by up to 2.5 orders of magnitude while inferred accretion rates increase by a more moderate order of magnitude. We present evidence that an increase in settling time of up to 2 orders of magnitude is to be expected, which is of significance for time-variability studies of polluted white dwarfs. Our grid also provides the most robust constraint on the onset of convective instabilities in DA white dwarfs to be in the effective temperature range from 18 000 to 18 250 K.
  •  
9.
  • Cunningham, Tim, et al. (författare)
  • Horizontal spreading of planetary debris accreted by white dwarfs
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 503:2, s. 1646-1667
  • Tidskriftsartikel (refereegranskat)abstract
    • White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the three-dimensional (3D) radiation hydrodynamics code (COBOLD)-B-5, we present the first transport coefficients in degenerate star atmospheres that describe the advection-diffusion of a passive scalar across the surface plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range of 6000-18 000K and pure-helium atmospheres in the range of 12 000-34 000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; greater than or similar to 13 000 K) and helium-rich atmospheres (DB and DBA; greater than or similar to 30 000 K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations in white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion time-scale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity that is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics.
  •  
10.
  • Dravins, Dainis, et al. (författare)
  • Spatially resolved spectroscopy across stellar surfaces : IV. F, G, and K-stars: Synthetic 3D spectra at hyper-high resolution
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-precision stellar analyses require hydrodynamic 3D modeling. Such models predict changes across stellar disks of spectral line shapes, asymmetries, and wavelength shifts. For testing models in stars other than the Sun, spatially resolved observations are feasible from differential spectroscopy during exoplanet transits, retrieving spectra of those stellar surface segments that successively become hidden behind the transiting planet, as demonstrated in Papers I, II, and III. Aims. Synthetic high-resolution spectra over extended spectral regions are now available from 3D models. Similar to other ab initio simulations in astrophysics, these data contain patterns that have not been specifically modeled but may be revealed after analyses to be analogous to those of a large volume of observations. Methods. From five 3D models spanning Teff = 3964-6726 K (spectral types ~K8 V-F3 V), synthetic spectra at hyper-high resolution (λ/Δλ >1 000 000) were analyzed. Selected Fe » I and Fe » II lines at various positions across stellar disks were searched for characteristic patterns between different types of lines in the same star and for similar lines between different stars. Results. Spectral-line patterns are identified for representative photospheric lines of different strengths, excitation potentials, and ionization levels, thereby encoding the hydrodynamic 3D structure. Line profiles and bisectors are shown for various stars at different positions across stellar disks. Absolute convective wavelength shifts are obtained as differences to 1D models, where such shifts do not occur. Conclusions. Observable relationships for line properties are retrieved from realistically complex synthetic spectra. Such patterns may also test very detailed 3D modeling, including non-LTE effects. While present results are obtained at hyper-high spectral resolution, the subsequent Paper V examines their practical observability at realistically lower resolutions, and in the presence of noise.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy