SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fridlind Ann M.) "

Sökning: WFRF:(Fridlind Ann M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ovchinnikov, Mikhail, et al. (författare)
  • Intercomparison of large-eddy simulations of Arctic mixed-phase clouds : Importance of ice size distribution assumptions
  • 2014
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 6:1, s. 223-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, N-i, exerts significant influence on the cloud structure. Increasing N-i leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.
  •  
2.
  • Cesana, Grégory V., et al. (författare)
  • Observational constraint on a feedback from supercooled clouds reduces projected warming uncertainty
  • 2024
  • Ingår i: Communications Earth & Environment. - 2662-4435. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase of carbon-dioxide-doubling-induced warming (climate sensitivity) in the latest climate models is primarily attributed to a larger extratropical cloud feedback. This is thought to be partly driven by a greater ratio of supercooled liquid-phase clouds to all clouds, termed liquid phase ratio. We use an instrument simulator approach to show that this ratio has increased in the latest climate models and is overestimated rather than underestimated as previously thought. In our analysis of multiple models, a greater ratio corresponds to stronger negative cloud feedback, in contradiction with single-model-based studies. We trace this unexpected result to a cloud feedback involving a shift from supercooled to warm clouds as climate warms, which corresponds to greater cloud amount and optical depth and weakens the extratropical cloud feedback. Better constraining this ratio in climate models – and thus this supercooled cloud feedback – impacts their climate sensitivities by up to 1 ˚C and reduces inter-model spread.
  •  
3.
  •  
4.
  • Quaas, Johannes, et al. (författare)
  • Constraining the Twomey effect from satellite observations : issues and perspectives
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 15079-15099
  • Tidskriftsartikel (refereegranskat)abstract
    • The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol-cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to Delta N-d, (ant) ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (N-d) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, Delta N-d, (ant), remains uncertain. The discrepancy between process under-standing at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining Delta N-d, (ant) namely the quantification of (i) the cloud-active aerosol - the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) N-d, (iii) the statistical approach for inferring the sensitivity of N-d to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of N-d, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the N-d-to-CCN sensitivity, key issues are the updraught distributions and the role of N-d sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy