SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fried Kaj) "

Sökning: WFRF:(Fried Kaj)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amandusson, Åsa, 1974- (författare)
  • Estrogen receptor expression in relation to pain modulation and transmission : experimental studies in rats
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Estrogens have a remarkably wide range of actions in the mammalian brain. They not only play a pivotal role in reproductive behavior and sexual differentiation, but also contribute to e.g. thermoregulation, feeding, memory, neuronal survival and the perception of somatosensory stimuli. A multitude of studies on both animals and human subjects has demonstrated potential effects of gonadal hormones, such as estrogens, on pain transmission. These effects most likely involve multiple neuroanatomical circuits as well as diverse neurochemical systems and therefore need to be evaluated specifically in relation to the localization and intrinsic characteristics of the neurons engaged. The overall aim of this thesis is to gain specific knowledge of the possible cellular mechanisms by which estrogens may influence the transmission of nociceptive stimuli at the level of the spinal cord. The estrogen receptors, by which estrogens regulate non-genomic as well as genomic mechanisms, are crucial to estrogen signaling in general and essential to the estrogen-induced effects in the brain. In Paper I, we use immunohistochemistry to label neurons containing estrogen receptor-! (ERα) in the medullary and spinal dorsal horn of female rats. Large numbers of ER!-expressing neurons were found in lamina I and lamina II, i.e. in the areas involved in the processing of primary afferent nociceptive information. This distribution in part overlaps that of enkephalin, a potent pain-inhibiting endogenous opioid. The effects of gonadal hormones on pain modulation may, to a great extent, be blocked by the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in the prosecution of hormonal pain regulation. By combining immunohistochemical labeling of ERα with in situ hybridization of preproenkephalin mRNA (Paper II), we demonstrate that the majority of enkephalinergic neurons in the superficial laminae of the spinal and medullary dorsal horn express ER!. This co-localization and the fact that the preproenkephalin gene contains a sequence that binds ERs, suggest that estrogens may potentially regulate enkephalin expression in these cells. This is further supported by the findings in Paper III in which we show that a single subcutaneous injection of estradiol induces a significant increase (on average 68%) in preproenkephalin mRNA content in the spinal cord after 4 hours. The expression of the enkephalin gene in the spinal cord is thus sensitive to fluctuating estradiol levels. In Paper IV, a noxious injection of formalin is used to induce activation of a neuronal population involved in nociceptive transmission from the face. By using a dual-labeling immunohistochemistry protocol, we were able to identify ER!-expressing cells within this neuronal population suggesting that nociceptive-responsive neurons in the medullary dorsal horn express ER!. In all, our findings provide morphological as well as biochemical evidence in support for an estrogen-dependent modulation of nociceptive processing at the level of the dorsal horn.
  •  
2.
  • Bouderlique, Thibault, et al. (författare)
  • Surface flow for colonial integration in reef-building corals
  • 2022
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 32:12, s. 2596-2609
  • Tidskriftsartikel (refereegranskat)abstract
    • Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.
  •  
3.
  •  
4.
  •  
5.
  • Kaucka, Marketa, et al. (författare)
  • Analysis of neural crest-derived clones reveals novel aspects of facial development
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
  •  
6.
  • Kaucka, Marketa, et al. (författare)
  • Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
  • 2017
  • Ingår i: eLIFE. - : Elife Sciences Publications LTD. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
  •  
7.
  • Kaukua, Nina, et al. (författare)
  • Glial origin of mesenchymal stem cells in a tooth model system
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7519, s. 551-554
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair(1). The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium(2). It has been thought for decades that the dental mesenchymal stem cells(3) giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue(4,5). Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique(6) with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.
  •  
8.
  •  
9.
  • Osman, Ayman (författare)
  • Autophagy in Peripheral Neuropathy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peripheral neuropathy includes a wide range of diseases affecting millions around the world, and many of these diseases have unknown etiology. Peripheral neuropathy in diabetes represents a large proportion of peripheral neuropathies. Nerve damage can also be caused by trauma. Peripheral neuropathies are a significant clinical problem and efficient treatments are largely lacking. In the case of a transected nerve, different methods have been used to repair or reconstruct the nerve, including the use of nerve conduits, but functional recovery is usually poor.Autophagy, a cellular mechanism that recycles damaged proteins, is impaired in the brain in many neurodegenerative diseases affecting animals and humans. No research, however, has investigated the presence of autophagy in the human peripheral nervous system. In this study, I present the first structural evidence of autophagy in human peripheral nerves. I also show that the density of autophagy structures is higher in peripheral nerves of patients with chronic idiopathic axonal polyneuropathy (CIAP) and inflammatory neuropathy than in controls. The density of these structures increases with the severity of the neuropathy.In animal model, using Goto-Kakizaki (GK) rats with diabetes resembling human type 2 diabetes, activation of autophagy by local administration of rapamycin incorporated in collagen conduits that were used for reconnection of the transected sciatic nerve led to an increase in autophagy proteins LC3 and a decrease in p62 suggesting that the autophagic flux was activated. In addition, immunoreactivity of neurofilaments, which are parts of the cytoskeleton of axons, was increased indicating increased axonal regeneration. I also show that many proteins involved in axonal regeneration and cell survival were up-regulated by rapamycin in the injured sciatic nerve of GK rats four weeks after injury.Taken together, these findings provide new knowledge about the involvement of autophagy in neuropathy and after peripheral nerve injury and reconstruction using collagen conduits.
  •  
10.
  • Petersen, Julian, et al. (författare)
  • A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Fried, Kaj (15)
Adameyko, Igor (11)
Zikmund, Tomas (7)
Kaiser, Jozef (7)
Kaucka, Marketa (7)
Tesarova, Marketa (6)
visa fler...
Petersen, Julian (5)
Xie, Meng (4)
Hellander, Andreas (3)
Li, Lei (3)
Brismar, Hjalmar (3)
Faure, Louis (3)
Englmaier, Lukas (3)
Chagin, Andrei S (3)
Newton, Phillip T. (3)
Harkany, Tibor (2)
Blom, Hans (2)
Ernfors, Patrik (2)
Linares Arregui, Ire ... (2)
Arenas, Ernest (2)
Grossschmidt, Karl (2)
Clevers, Hans (2)
Sanchez, Sophie (2)
Bouderlique, Thibaul ... (2)
Koehne, Till (2)
Zeberg, Hugo (2)
Edwards, Steven (2)
Simon, András (2)
Tafforeau, Paul (2)
Gol'din, Pavel (2)
Erickson, Alek (2)
Sunadome, Kazunori (2)
Kah, Delf (2)
Fabry, Ben (2)
Kanatani, Shigeaki (2)
Kameneva, Polina (2)
Maki, Koichiro (2)
Adachi, Taiji (2)
Suter, Ueli (2)
Gyllborg, Daniel (2)
Kastriti, Maria Elen ... (2)
Ivashkin, Evgeny (2)
Pachnis, Vassilis (2)
Sharpe, Paul (2)
Dyachuk, Vyacheslav (2)
Deviatiiarov, Ruslan (2)
Gusev, Oleg (2)
Nishimori, Shigeki (2)
Timashev, Peter (2)
Kotova, Svetlana (2)
visa färre...
Lärosäte
Karolinska Institutet (13)
Kungliga Tekniska Högskolan (8)
Uppsala universitet (6)
Linköpings universitet (4)
Stockholms universitet (2)
Göteborgs universitet (1)
visa fler...
Jönköping University (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Medicin och hälsovetenskap (9)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy