SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friedlein R) "

Sökning: WFRF:(Friedlein R)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Sanchez-Carrera, R.S., et al. (författare)
  • Vibronic coupling in the ground and excited states of oligoacene cations
  • 2006
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 110:38, s. 18904-18911
  • Tidskriftsartikel (refereegranskat)abstract
    • The vibrational coupling in the ground and excited states of positively charged naphthalene, anthracene, tetracene, and pentacene molecules is studied on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. Our theoretical and experimental results reveal that, while the main contribution to relaxation energy in the ground state of oligoacene systems comes from high-energy vibrations, the excited-state relaxation energies show a significant redistribution toward lower-frequency vibrations. A direct correlation is found between the nature of the vibronic interaction and the pattern of the electronic state structure. © 2006 American Chemical Society.
  •  
4.
  • Crispin, Xavier, 1972-, et al. (författare)
  • Electronic delocalization in discotic liquid crystals : A joint experimental and theoretical study
  • 2004
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 126:38, s. 11889-11899
  • Tidskriftsartikel (refereegranskat)abstract
    • Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2′,3′-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper π-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the π-electrons along the discotic stacks.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Friedlein, R, et al. (författare)
  • Ultra-fast charge transfer in organic electronic materials and at hybrid interfaces studied using the core-hole clock technique
  • 2011
  • Ingår i: JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA. - : Elsevier Science B.V., Amsterdam.. - 0368-2048. ; 183:1-3, s. 101-106
  • Tidskriftsartikel (refereegranskat)abstract
    • The focus of this brief review is the use of resonant photoemission in its "core-hole clock" expression for the study of two important problems relevant for the field of organic electronics: the dynamical charge transfer across hybrid organic-inorganic interfaces, and the intermolecular charge transfer in the bulk of organic thin films. Following an outline of the technique, a discussion of its applicability and a short overview of experimental results obtained thus far, two examples are used to illustrate particular results relevant for the understanding of the charge transport in organic electronic devices. First, for Fe(II)-tetraphenylporphyrin molecules on semi-metallic molybdenum disulfide substrates, the electronic coupling to the substrate and the efficiency of charge transport across the interface different for the individual molecular electronic subsystems is discussed. And second, a discotic liquid crystalline material forming columnar assemblies is used to illustrate ultra-fast intermolecular charge transfer on the order of a few femtoseconds indicating an electronic coupling between the phthalocyanine units stronger than expected from the macroscopic charge transport characteristics of the material. (C) 2011 Published by Elsevier B.V.
  •  
9.
  • Minkov, Ivaylo, et al. (författare)
  • Core-excitations of naphthalene : Vibrational structure versus chemical shifts
  • 2004
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 121:12, s. 5733-5739
  • Tidskriftsartikel (refereegranskat)abstract
    • The initial state chemical shifts and vibrational fine structure of core excitations of naphthalene were analyzed using high-resolution x-ray photoelectron emission (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectra. The carbon atoms at peripheral sites were found to experience a small chemical shift and exhibit similar charge-vibrational coupling. The C-H stretching modes provide significant contributions to overall shape of spectra in the XPS spectra. The results show that vibrational fine structure dominates by particular C-C stretching modes, and in XPS of C2 and C3 sites also by high-energy C-H stretching modes.
  •  
10.
  • Oehzelt, M., et al. (författare)
  • Crystallographic and morphological characterization of thin pentacene films on polycrystalline copper surfaces
  • 2006
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 124:5, s. 54711-
  • Tidskriftsartikel (refereegranskat)abstract
    • The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures. © 2006 American Institute of Physics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy