SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friedlingstein Pierre) "

Sökning: WFRF:(Friedlingstein Pierre)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlström, Anders, et al. (författare)
  • The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 348:6237, s. 895-899
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
  •  
2.
  •  
3.
  • Anav, Alessandro, et al. (författare)
  • Spatiotemporal patterns of terrestrial gross primary production : A review
  • 2015
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 53:3, s. 785-818
  • Forskningsöversikt (refereegranskat)abstract
    • Great advances have been made in the last decade in quantifying and understanding the spatiotemporal patterns of terrestrial gross primary production (GPP) with ground, atmospheric, and space observations. However, although global GPP estimates exist, each data set relies upon assumptions and none of the available data are based only on measurements. Consequently, there is no consensus on the global total GPP and large uncertainties exist in its benchmarking. The objective of this review is to assess how the different available data sets predict the spatiotemporal patterns of GPP, identify the differences among data sets, and highlight the main advantages/disadvantages of each data set. We compare GPP estimates for the historical period (1990-2009) from two observation-based data sets (Model Tree Ensemble and Moderate Resolution Imaging Spectroradiometer) to coupled carbon-climate models and terrestrial carbon cycle models from the Fifth Climate Model Intercomparison Project and TRENDY projects and to a new hybrid data set (CARBONES). Results show a large range in the mean global GPP estimates. The different data sets broadly agree on GPP seasonal cycle in terms of phasing, while there is still discrepancy on the amplitude. For interannual variability (IAV) and trends, there is a clear separation between the observation-based data that show little IAV and trend, while the process-based models have large GPP variability and significant trends. These results suggest that there is an urgent need to improve observation-based data sets and develop carbon cycle modeling with processes that are currently treated either very simplistically to correctly estimate present GPP and better quantify the future uptake of carbon dioxide by the world's vegetation.
  •  
4.
  • Davies-Barnard, Taraka, et al. (författare)
  • Nitrogen cycling in CMIP6 land surface models : Progress and limitations
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:20, s. 5129-5148
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitrogen cycle and its effect on carbon uptake in the terrestrial biosphere is a recent progression in earth system models. As with any new component of a model, it is important to understand the behaviour, strengths, and limitations of the various process representations. Here we assess and compare five land surface models with nitrogen cycles that are used as the terrestrial components of some of the earth system models in CMIP6. The land surface models were run offline with a common spin-up and forcing protocol. We use a historical control simulation and two perturbations to assess the model nitrogen-related performances: a simulation with atmospheric carbon dioxide increased by 200 ppm and one with nitrogen deposition increased by 50 kgN ha-1 yr-1. There is generally greater variability in productivity response between models to increased nitrogen than to carbon dioxide. Across the five models the response to carbon dioxide globally was 5 % to 20 % and the response to nitrogen was 2 % to 24 %. The models are not evenly distributed within the ensemble range, with two of the models having low productivity response to nitrogen and another one with low response to elevated atmospheric carbon dioxide, compared to the other models. In all five models individual grid cells tend to exhibit bimodality, with either a strong response to increased nitrogen or atmospheric carbon dioxide but rarely to both to an equal extent. However, this local effect does not scale to either the regional or global level. The global and tropical responses are generally more accurately modelled than boreal, tundra, or other high-latitude areas compared to observations. These results are due to divergent choices in the representation of key nitrogen cycle processes. They show the need for more observational studies to enhance understanding of nitrogen cycle processes, especially nitrogen-use efficiency and biological nitrogen fixation.
  •  
5.
  •  
6.
  • Gallego-Sala, Angela V., et al. (författare)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
7.
  • Hantson, Stijn, et al. (författare)
  • The status and challenge of global fire modelling
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
8.
  • Heinze, Christoph, et al. (författare)
  • ESD Reviews : Climate feedbacks in the Earth system and prospects for their evaluation
  • 2019
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 10:3, s. 379-452
  • Forskningsöversikt (refereegranskat)abstract
    • Earth system models (ESMs) are key tools for providing climate projections under different scenarios of human-induced forcing. ESMs include a large number of additional processes and feedbacks such as biogeochemical cycles that traditional physical climate models do not consider. Yet, some processes such as cloud dynamics and ecosystem functional response still have fairly high uncertainties. In this article, we present an overview of climate feedbacks for Earth system components currently included in state-of-the-art ESMs and discuss the challenges to evaluate and quantify them. Uncertainties in feedback quantification arise from the interdependencies of biogeochemical matter fluxes and physical properties, the spatial and temporal heterogeneity of processes, and the lack of long-term continuous observational data to constrain them. We present an outlook for promising approaches that can help to quantify and to constrain the large number of feedbacks in ESMs in the future. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research (researchers, lecturers, and students). This study updates and significantly expands upon the last comprehensive overview of climate feedbacks in ESMs, which was produced 15 years ago (NRC, 2003).
  •  
9.
  • Jung, Martin, et al. (författare)
  • Compensatory water effects link yearly global land CO 2 sink changes to temperature
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 541:7638, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO 2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.
  •  
10.
  • Kondo, Masayuki, et al. (författare)
  • Are Land-Use Change Emissions in Southeast Asia Decreasing or Increasing?
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Southeast Asia is a region known for active land-use changes (LUC) over the past 60 years; yet, how trends in net CO2 uptake and release resulting from LUC activities (net LUC flux) have changed through past decades remains uncertain. The level of uncertainty in net LUC flux from process-based models is so high that it cannot be concluded that newer estimates are necessarily more reliable than older ones. Here, we examined net LUC flux estimates of Southeast Asia for the 1980s−2010s from older and newer sets of Dynamic Global Vegetation Model simulations (TRENDY v2 and v7, respectively), and forcing data used for running those simulations, along with two book-keeping estimates (H&N and BLUE). These estimates yielded two contrasting historical LUC transitions, such that TRENDY v2 and H&N showed a transition from increased emissions from the 1980s to 1990s to declining emissions in the 2000s, while TRENDY v7 and BLUE showed the opposite transition. We found that these contrasting transitions originated in the update of LUC forcing data, which reduced the loss of forest area during the 1990s. Further evaluation of remote sensing studies, atmospheric inversions, and the history of forestry and environmental policies in Southeast Asia supported the occurrence of peak emissions in the 1990s and declining thereafter. However, whether LUC emissions continue to decline in Southeast Asia remains uncertain as key processes in recent years, such as conversion of peat forest to oil-palm plantation, are yet to be represented in the forcing data, suggesting a need for further revision.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy