SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friedmann Peter) "

Sökning: WFRF:(Friedmann Peter)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashkinadze, Dzmitry, et al. (författare)
  • Atomic resolution protein allostery from the multi-state structure of a PDZ domain
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method. In the apo protein, an allosteric conformational selection step comprising almost 60% of the domain was detected with an "open" ligand welcoming state and a "closed" state that obstructs the binding site by changing the distance between the beta-sheet 2, alpha-helix 2, and sidechains of residues Lys38 and Lys72. The observed induced fit-type apo-holo structural rearrangements are in line with the previously published evolution-based analysis covering similar to 25% of the domain with only a partial overlap with the protein allostery of the open form. These presented structural studies highlight the presence of a dedicated highly optimized and complex dynamic interplay of the PDZ2 domain owed by the structure-dynamics landscape.
  •  
2.
  • Diment, Bethany, et al. (författare)
  • Exercise Intensity and Duration Effects on In Vivo Immunity
  • 2015
  • Ingår i: Medicine & Science in Sports & Exercise. - 0195-9131 .- 1530-0315. ; 47:7, s. 1390-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To examine the effects of intensity and duration of exercise stress on induction of in vivo immunity in humans using experimental contact hypersensitivity (CHS) with the novel antigen diphenylcyclopropenone (DPCP).Methods: Sixty-four healthy males completed either 30 min running at 60% V˙O2peak (30MI), 30 min running at 80% V˙O2peak (30HI), 120 min running at 60% V˙O2peak (120MI), or seated rest (CON). Twenty min later, the subjects received a sensitizing dose of DPCP; and 4 wk later, the strength of immune reactivity was quantified by measuring the cutaneous responses to a low dose-series challenge with DPCP on the upper inner arm. Circulating epinephrine, norepinephrine and cortisol were measured before, after, and 1 h after exercise or CON. Next, to understand better whether the decrease in CHS response on 120MI was due to local inflammatory or T-cell-mediated processes, in a crossover design, 11 healthy males performed 120MI and CON, and cutaneous responses to a dose series of the irritant, croton oil (CO), were assessed on the upper inner arm.Results: Immune induction by DPCP was impaired by 120MI (skinfold thickness -67% vs CON; P < 0.05). However, immune induction was unaffected by 30MI and 30HI despite elevated circulating catecholamines (30HI vs pre: P < 0.01) and greater circulating cortisol post 30HI (vs CON; P < 0.01). There was no effect of 120MI on skin irritant responses to CO.Conclusions: Prolonged moderate-intensity exercise, but not short-lasting high- or short-lasting moderate-intensity exercise, decreases the induction of in vivo immunity. No effect of prolonged moderate-intensity exercise on the skin's response to irritant challenge points toward a suppression of cell-mediated immunity in the observed decrease in CHS. Diphenylcyclopropenone provides an attractive tool to assess the effect of exercise on in vivo immunity.
  •  
3.
  • Nicoletti, Paola, et al. (författare)
  • Shared Genetic Risk Factors Across Carbamazepine-Induced Hypersensitivity Reactions
  • 2019
  • Ingår i: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 106:5, s. 1028-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbamazepine (CBZ) causes life-threating T-cell-mediated hypersensitivity reactions, including serious cutaneous adverse reactions (SCARs) and drug-induced liver injury (CBZ-DILI). In order to evaluate shared or phenotype-specific genetic predisposing factors for CBZ hypersensitivity reactions, we performed a meta-analysis of two genomewide association studies (GWAS) on a total of 43 well-phenotyped Northern and Southern European CBZ-SCAR cases and 10,701 population controls and a GWAS on 12 CBZ-DILI cases and 8,438 ethnically matched population controls. HLA-A*31:01 was identified as the strongest genetic predisposing factor for both CBZ-SCAR (odds ratio (OR) = 8.0; 95% CI 4.10-15.80; P = 1.2 x 10(-9)) and CBZ-DILI (OR = 7.3; 95% CI 2.47-23.67; P = 0.0004) in European populations. The association with HLA-A*31:01 in patients with SCAR was mainly driven by hypersensitivity syndrome (OR = 12.9; P = 2.1 x 10(-9)) rather than by Stevens-Johnson syndrome/toxic epidermal necrolysis cases, which showed an association with HLA-B*57:01. We also identified a novel risk locus mapping to ALK only for CBZ-SCAR cases, which needs replication in additional cohorts and functional evaluation.
  •  
4.
  • Strotz, Dean, et al. (författare)
  • Protein Allostery at Atomic Resolution
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 59:49, s. 22132-22139
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein allostery is a phenomenon involving the long range coupling between two distal sites in a protein. In order to elucidate allostery at atomic resoluion on the ligand-binding WW domain of the enzyme Pin1, multistate structures were calculated from exact nuclear Overhauser effect (eNOE). In its free form, the protein undergoes a microsecond exchange between two states, one of which is predisposed to interact with its parent catalytic domain. In presence of the positive allosteric ligand, the equilibrium between the two states is shifted towards domain-domain interaction, suggesting a population shift model. In contrast, the allostery-suppressing ligand decouples the side-chain arrangement at the inter-domain interface thereby reducing the inter-domain interaction. As such, this mechanism is an example of dynamic allostery. The presented distinct modes of action highlight the power of the interplay between dynamics and function in the biological activity of proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy