SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friend Richard) "

Sökning: WFRF:(Friend Richard)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pandya, Raj, et al. (författare)
  • Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.
  •  
2.
  • Campbell, Charles, et al. (författare)
  • Bridging model and real catalysts: general discussion
  • 2016
  • Ingår i: Faraday Discussions. - 1359-6640 .- 1364-5498. ; 188, s. 565-589
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Charles Campbell opened the discussion of the paper by Hans-JoachimFreund: If you have a 3D gold particle and it spreads out to be a 2D particle whenyou adsorb CO2, it must gain energy stability. Did you estimate the energy changeof the overall process to do that?
  •  
3.
  • Gray, Victor, Dr, 1988-, et al. (författare)
  • Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion
  • 2024
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 146:11, s. 7763-7770
  • Tidskriftsartikel (refereegranskat)abstract
    • Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.
  •  
4.
  • Pennington, Bruce, et al. (författare)
  • Individual prediction of dyslexia by single vs. multiple deficit models.
  • 2012
  • Ingår i: Journal of Abnormal Psychology. - : American Psychological Association. - 0021-843X .- 1939-1846. ; 121:1, s. 212-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall goals of this study were to test single versus multiple cognitive deficit models of dyslexia (reading disability) at the level of individual cases and to determine the clinical utility of these models for prediction and diagnosis of dyslexia. To accomplish these goals, we tested five cognitive models of dyslexia-two single-deficit models, two multiple-deficit models, and one hybrid model-in two large population-based samples, one cross-sectional (Colorado Learning Disability Research Center) and one longitudinal (International longitudinal Twin Study). The cognitive deficits included in these cognitive models were in phonological awareness, language skill, and processing speed and/or naming speed. To determine whether an individual case fit one of these models, we used two methods: 1) the presence or absence of the predicted cognitive deficits, and 2) whether the individuals level of reading skill best fit the regression equation with the relevant cognitive predictors (i.e., whether their reading skill was proportional to those cognitive predictors.) We found that roughly equal proportions of cases met both tests of model fit for the multiple deficit models (30-36%) and single deficit models (24-28%); hence, the hybrid model provided the best overall fit to the data. The remaining roughly 40% of cases in each sample lacked the deficit or deficits that corresponded with their best-fitting regression model. We discuss the clinical implications of these results for both diagnosis of school-age children and preschool prediction of children at risk for dyslexia.
  •  
5.
  • Raghavan, Maanasa, et al. (författare)
  • Genomic evidence for the Pleistocene and recent population history of Native Americans
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 349:6250
  • Tidskriftsartikel (refereegranskat)abstract
    • Howand when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
  •  
6.
  • Toolan, Daniel T. W., et al. (författare)
  • Insights into the Structure and Self-Assembly of Organic-Semiconductor/Quantum-Dot Blends
  • 2022
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 32:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the dispersibility of crystalline inorganic quantum dots (QD) within organic-QD nanocomposite films is critical for a wide range of optoelectronic devices. A promising way to control nanoscale structure in these nanocomposites is via the use of appropriate organic ligands on the QD, which help to compatibilize them with the organic host, both electronically and structurally. Here, using combined small-angle X-ray and neutron scattering, the authors demonstrate and quantify the incorporation of such a compatibilizing, electronically active, organic semiconductor ligand species into the native oleic acid ligand envelope of lead sulphide, QDs, and how this ligand loading may be easily controlled. Further more, in situ grazing incidence wide/small angle X-ray scattering demonstrate how QD ligand surface chemistry has a pronounced effect on the self-assembly of the nanocomposite film in terms of both small-molecule crystallization and QD dispersion versus ordering/aggregation. The approach demonstrated here shows the important role which the degree of incorporation of an active ligand, closely related in chemical structure to the host small-molecule organic matrix, plays in both the self-assembly of the QD and small-molecule components and in determining the final optoelectronic properties of the system.
  •  
7.
  • Toolan, Daniel T. W., et al. (författare)
  • Linking microscale morphologies to localised performance in singlet fission quantum dot photon multiplier thin films
  • 2022
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry. - 2050-7526 .- 2050-7534. ; 10:31, s. 11192-11198
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid small-molecule/quantum dot films have the potential to reduce thermalization losses in single-junction photovoltaics as photon multiplication devices. Here grazing incidence X-ray scattering, optical microscopy and IR fluorescence microscopy (probing materials at two distinct wavelengths), provide new insight into highly complex morphologies across nm and mu m lengthscales to provide direct links between morphologies and photon multiplication performance. Results show that within the small molecule crystallites three different QD morphologies may be identified; (i) large quantum dot aggregates at the crystallite nucleus, (ii) relatively well-dispersed quantum dots and (iii) as aggregated quantum dots "swept" from the growing crystallite and that regions containing aggregate quantum dot features lead to relatively poor photon multiplication performance. These results establish how combinations of scattering and microscopy may be employed to reveal new insights into the structure and function of small molecule:quantum dot blends.
  •  
8.
  • Weir, Michael P., et al. (författare)
  • Ligand Shell Structure in Lead Sulfide–Oleic Acid Colloidal Quantum Dots Revealed by Small-Angle Scattering
  • 2019
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:16, s. 4713-4719
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystal quantum dots are generally coated with an organic ligand layer. These layers are a necessary consequence of their chemical synthesis, and in addition they play a key role in controlling the optical and electronic properties of the system. Here we describe a method for quantitative measurement of the ligand layer in 3 nm diameter lead sulfide–oleic acid quantum dots. Complementary small-angle X-ray and neutron scattering (SAXS and SANS) studies give a complete and quantitative picture of the nanoparticle structure. We find greater-than-monolayer coverage of oleic acid and a significant proportion of ligand remaining in solution, and we demonstrate reversible thermal cycling of the oleic acid coverage. We outline the effectiveness of simple purification procedures with applications in preparing dots for efficient ligand exchange. Our method is transferrable to a wide range of colloidal nanocrystals and ligand chemistries, providing the quantitative means to enable the rational design of ligand-exchange procedures.
  •  
9.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:7, s. 7301-7311
  • Tidskriftsartikel (refereegranskat)abstract
    • We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.
  •  
10.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51
Typ av publikation
tidskriftsartikel (48)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Friend, Richard H. (38)
Greenham, Neil C. (16)
Gao, Feng (14)
Rao, Akshay (9)
Pearson, Andrew J. (5)
Wang, Jianpu (5)
visa fler...
Liu, Xiaoke (5)
Ducati, Caterina (4)
Dowland, Simon (4)
Xiao, James (4)
Zhang, Zhilong (4)
Westenhoff, Sebastia ... (4)
Bai, Sai (4)
Abdi-Jalebi, Mojtaba (3)
Philippe, Bertrand, ... (3)
Alsari, Mejd (3)
Lilliu, Samuele (3)
Rensmo, Håkan (3)
Divitini, Giorgio (3)
Stranks, Samuel D. (3)
Anthony, John E. (3)
Huang, Wei (3)
Beljonne, David (3)
Jin, Yizheng (3)
Bakulin, Artem A. (3)
Xu, Weidong (3)
Hodgkiss, Justin M. (3)
Dar, M. Ibrahim (2)
Sadhanala, Aditya (2)
Gratzel, Michael (2)
Cacovich, Stefania (2)
Richter, Johannes M. (2)
Liu, Yang (2)
Yartsev, Arkady (2)
Panas, Itai, 1959 (2)
Kotarba, Andrzej (2)
Campbell, Charles (2)
Budden, Peter (2)
Gao, Feng, 1981- (2)
Bao, Chunxiong (2)
Pennington, Bruce (2)
Byrne, Brian (2)
Samuelsson, Stefan (2)
Olson, Richard (2)
Friend, Angela (2)
Willcutt, Eric (2)
Huettner, Sven (2)
Behrends, Jan (2)
Corma, Avelino (2)
Brown, Tom (2)
visa färre...
Lärosäte
Linköpings universitet (24)
Uppsala universitet (15)
Göteborgs universitet (5)
Kungliga Tekniska Högskolan (3)
Lunds universitet (3)
Chalmers tekniska högskola (2)
visa fler...
Stockholms universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (51)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)
Teknik (8)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy