SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fristedt T.) "

Sökning: WFRF:(Fristedt T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engstrand, J., et al. (författare)
  • Liver resection and ablation for squamous cell carcinoma liver metastases
  • 2021
  • Ingår i: BJS Open. - Oxford, United Kingdom : Oxford University Press. - 2474-9842. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Limited evidence exists to guide the management of patients with liver metastases from squamous cell carcinoma (SCC). The aim of this retrospective multicentre cohort study was to describe patterns of disease recurrence after liver resection/ablation for SCC liver metastases and factors associated with recurrence-free survival (RFS) and overall survival (OS).METHOD: Members of the European-African Hepato-Pancreato-Biliary Association were invited to include all consecutive patients undergoing liver resection/ablation for SCC liver metastases between 2002 and 2019. Patient, tumour and perioperative characteristics were analysed with regard to RFS and OS.RESULTS: Among the 102 patients included from 24 European centres, 56 patients had anal cancer, and 46 patients had SCC from other origin. RFS in patients with anal cancer and non-anal cancer was 16 and 9 months, respectively (P = 0.134). A positive resection margin significantly influenced RFS for both anal cancer and non-anal cancer liver metastases (hazard ratio 6.82, 95 per cent c.i. 2.40 to 19.35, for the entire cohort). Median survival duration and 5-year OS rate among patients with anal cancer and non-anal cancer were 50 months and 45 per cent and 21 months and 25 per cent, respectively. For the entire cohort, only non-radical resection was associated with worse overall survival (hazard ratio 3.21, 95 per cent c.i. 1.24 to 8.30).CONCLUSION: Liver resection/ablation of liver metastases from SCC can result in long-term survival. Survival was superior in treated patients with liver metastases from anal versus non-anal cancer. A negative resection margin is paramount for acceptable outcome.
  •  
2.
  •  
3.
  •  
4.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden-Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a "perfect" storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
5.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden—Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : John Wiley & Sons. - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002084 developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a “perfect” storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy