SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frisvad J.) "

Sökning: WFRF:(Frisvad J.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hyde, K. D., et al. (författare)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • Ingår i: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Tidskriftsartikel (refereegranskat)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
2.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
3.
  • Andersen, M. R., et al. (författare)
  • Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88
  • 2011
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 21:6, s. 885-897
  • Tidskriftsartikel (refereegranskat)abstract
    • The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook wholegenome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi
  •  
4.
  •  
5.
  • Barbosa, R. N., et al. (författare)
  • Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees
  • 2017
  • Ingår i: Studies in mycology. - : Westerdijk Fungal Biodiversity Institute. - 0166-0616 .- 1872-9797. ; :86, s. 29-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Monascus was described by van Tieghem (1884) to accommodate M. ruber and M. mucoroides, two species with non-ostiolate ascomata. Species delimitation in the genus is still mainly based on phenotypic characters, and taxonomic studies that include sequence data are limited. The genus is of economic importance. Species are used in fermented Asian foods as food colourants (e.g. 'red rice' (ang-kak, angka)) and found as spoilage organisms, and recently Monascus was found to be essential in the lifecycle of stingless bees. In this study, a polyphasic approach was applied combining morphological characters, ITS, LSU, beta-tubulin, calmodulin and RNA polymerase II second largest subunit sequences and extrolite data, to delimit species and to study phylogenetic relationships in Monascus. Furthermore, 30 Monascus isolates from honey, pollen and nests of stingless bees in Brazil were included. Based on this polyphasic approach, the genus Monascus is resolved in nine species, including three new species associated with stingless bees (M. flavipigmentosus sp. nov., M. mellicola sp. nov., M. recifensis sp. nov., M. argentinensis, M. floridanus, M. lunisporas, M. pallens, M. purpureus, M. ruber), and split in two new sections (section Floridani sect. nov., section Rubri sect. nov.). Phylogenetic analysis showed that the xerophile Monascus eremophilus does not belong in Monascus and monophyly in Monascus is restored with the transfer of M. eremophilus to Penicillium (P. eremophilum comb. nov.). A list of accepted and excluded Monascus and Basipetospora species is given, together with information on (ex-)types cultures and barcode sequence data.
  •  
6.
  • Grijseels, S., et al. (författare)
  • Identification of the decumbenone biosynthetic gene cluster in penicillium decumbens and the importance for production of calbistrin
  • 2018
  • Ingår i: Fungal Biology and Biotechnology. - : Springer Science and Business Media LLC. - 2054-3085. ; 5:1, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Filamentous fungi are important producers of secondary metabolites, low molecular weight molecules that often have bioactive properties. Calbistrin A is a secondary metabolite with an interesting structure that was recently found to have bioactivity against leukemia cells. It consists of two polyketides linked by an ester bond: a bicy-clic decalin containing polyketide with structural similarities to lovastatin, and a linear 12 carbon dioic acid structure. Calbistrin A is known to be produced by several uniseriate black Aspergilli, Aspergillus versicolor-related species, and Penicillia. Penicillium decumbens produces calbistrin A and B as well as several putative intermediates of the calbistrin pathway, such as decumbenone A-B and versiol. Results: A comparative genomics study focused on the polyketide synthase (PKS) sets found in three full genome sequence calbistrin producing fungal species, P. decumbens, A. aculeatus and A. versicolor, resulted in the identification of a novel, putative 13-membered calbistrin producing gene cluster (calA to calM). Implementation of the CRISPR/ Cas9 technology in P. decumbens allowed the targeted deletion of genes encoding a polyketide synthase (calA), a major facilitator pump (calB) and a binuclear zinc cluster transcription factor (calC). Detailed metabolic profiling, using UHPLC-MS, of the ∆calA (PKS) and ∆calC ( TF) strains confirmed the suspected involvement in calbistrin productions as neither strains produced calbistrin nor any of the putative intermediates in the pathway. Similarly analysis of the excreted metabolites in the ∆calB (MFC-pump) strain showed that the encoded pump was required for efficient export of calbistrin A and B. Conclusion: Here we report the discovery of a gene cluster (calA-M) involved in the biosynthesis of the polyketide calbistrin in P. decumbens. Targeted gene deletions proved the involvement of CalA (polyketide synthase) in the biosynthesis of calbistrin, CalB (major facilitator pump) for the export of calbistrin A and B and CalC for the transcriptional regulation of the cal-cluster. This study lays the foundation for further characterization of the calbistrin biosynthetic pathway in multiple species and the development of an efficient calbistrin producing cell factory.
  •  
7.
  • Froslev Nielsen, Jens Christian, 1987, et al. (författare)
  • Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species
  • 2017
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 2:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were identified, and polyketide synthase and non-ribosomal peptide synthetase based BGCs were grouped into gene cluster families and mapped to known pathways. The grouping of BGCs allowed us to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. Finally, we cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic diversity of Penicillia and highlights the potential of these species as a source of new antibiotics and other pharmaceuticals.
  •  
8.
  • Grijseels, S., et al. (författare)
  • Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311(T) = IBT 12289(T)). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species.
  •  
9.
  • Grijseels, S., et al. (författare)
  • Physiological characterization of secondary metabolite producing Penicillium cell factories
  • 2017
  • Ingår i: Fungal Biology and Biotechnology. - : Springer Science and Business Media LLC. - 2054-3085. ; 4, s. 8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Penicillium species are important producers of bioactive secondary metabolites. However, the immense diversity of the fungal kingdom is only scarcely represented in industrial bioprocesses and the upscaling of compound production remains a costly and labor intensive challenge. In order to facilitate the development of novel secondary metabolite producing processes, two routes are typically explored: optimization of the native producer or transferring the enzymatic pathway into a heterologous host. Recent genome sequencing of ten Penicillium species showed the vast amount of secondary metabolite gene clusters present in their genomes, and makes them accessible for rational strain improvement. In this study, we aimed to characterize the potential of these ten Penicillium species as native producing cell factories by testing their growth performance and secondary metabolite production in submerged cultivations.Results: Cultivation of the fungal species in controlled submerged bioreactors showed that the ten wild type Penicillium species had promising, highly reproducible growth characteristics in two different media. Analysis of the secondary metabolite production using liquid chromatography coupled with high resolution mass spectrometry proved that the species produced a broad range of secondary metabolites, at different stages of the fermentations. Metabolite profiling for identification of the known compounds resulted in identification of 34 metabolites; which included several with bioactive properties such as antibacterial, antifungal and anticancer activities. Additionally, several novel species metabolite relationships were found.Conclusions: This study demonstrates that the fermentation characteristics and the highly reproducible performance in bioreactors of ten recently genome sequenced Penicillium species should be considered as very encouraging for the application of native hosts for production via submerged fermentation. The results are particularly promising for the potential development of the ten analysed Penicillium species for production of novel bioactive compounds via submerged fermentations
  •  
10.
  • Leong, Su-lin L., et al. (författare)
  • Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date
  • 2015
  • Ingår i: Environmental Microbiology. - Hoboken, USA : Wiley-Blackwell. - 1462-2912 .- 1462-2920. ; 17:2, s. 496-513
  • Tidskriftsartikel (refereegranskat)abstract
    • Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its dry' but nutrient-rich environment, X.bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X.bisporus. However, transcriptomes at optimal (approximate to 0.89) versus low a(w) (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X.bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a chaophile', preferring solutes that disorder biomolecular structures. Both X.bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of chaophiles'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Frisvad, J. C. (11)
Nielsen, Jens B, 196 ... (7)
Nielsen, K. F. (5)
Froslev Nielsen, Jen ... (5)
Grijseels, S. (4)
Workman, M. (4)
visa fler...
Samson, R. A. (3)
Souza-Motta, C. M. (3)
Houbraken, J. (3)
Nilsson, R. Henrik, ... (2)
Taylor, J.E. (2)
Stadler, M (2)
Ariyawansa, H.A (2)
Hyde, K.D. (2)
Hedén, Su-Lin (2)
Barbosa, R. N. (2)
Cai, L. (2)
Thines, M. (2)
Crous, P. W. (2)
Bezerra, J. D. P. (2)
Sandoval-Denis, M. (2)
Groenewald, J. Z. (2)
Vizzini, A. (2)
Rajeshkumar, K. C. (2)
Boekhout, T. (2)
Damm, U. (2)
Iturriaga, T. (2)
Lee, H. B. (2)
Matocec, N. (2)
Johnston, P.R. (2)
Abdollahzadeh, J. (2)
Câmara, M.P.S. (2)
Haelewaters, D. (2)
Chaverri, P. (2)
Araujo, J. P. M. (2)
Bakhshi, M. (2)
Castaneda-Ruiz, R. F ... (2)
Fan, X. L. (2)
Jeewon, R. (2)
Li, H. Y. (2)
Maharachchikumbura, ... (2)
Marin-Felix, Y. (2)
Phillips, A. J. L. (2)
Taylor, P. W. J. (2)
Vieira, W. A. S. (2)
Wijayawardene, N. N. (2)
Yurkov, A. (2)
Zare, R. (2)
Prigent, Sylvain, 19 ... (2)
Frandsen, Rasmus Joh ... (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (7)
Uppsala universitet (5)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (2)
Örebro universitet (1)
Lunds universitet (1)
visa fler...
RISE (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Teknik (2)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy