SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frohn Lise Marie) "

Sökning: WFRF:(Frohn Lise Marie)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hertel, Ole, et al. (författare)
  • Assessing atmospheric nitrogen deposition to natural and semi-natural ecosystems - Experience from Danish studies using the DAMOS
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 66, s. 151-160
  • Tidskriftsartikel (refereegranskat)abstract
    • Local agricultural emissions contribute significantly to the atmospheric reactive nitrogen loads of Danish terrestrial ecosystems. In the vicinity of the sources this may be up to 6-8 kg N ha(-1) yr(-1) depending on location and ecosystem type. This contribution arises from dry deposition of gas phase ammonia derived from local livestock production. Long-range transport, however, often constitutes the largest contribution to the overall atmospheric terrestrial reactive nitrogen loadings in Denmark. This is often in the range 10-15 kg N ha(-1) yr(-1) and consists mainly of aerosol phase nitrate and ammonium (reaction products of nitrogen oxides and ammonia), but also dry deposition of other reactive nitrogen compounds (mainly nitrogen oxides in the form of gas phase nitric acid and nitrogen dioxide). In Denmark's environmental management of the sensitive terrestrial ecosystems modelling tools are required that account for both the local and the long-range transported contributions. This motivated development of the Danish Ammonia MOdelling System (DAMOS) that has been successfully applied to the assessment of atmospheric nitrogen loadings to sensitive Danish ecosystems. We present here three different examples of such assessments. Our results show that ecosystems located in Western Denmark (Case 1) receive the highest loads of atmospheric nitrogen depositions which generally exceed the critical load. This part of the country has the highest livestock density. In the Eastern part of the country, the atmospheric loadings are often below or close to the lower end of the interval for critical load values. These lower loads in Eastern Denmark (Case 2) are due to lower density of agricultural activities, as well as, lower precipitation rates, which leads to less wet deposition of reactive nitrogen. In general there is a gradient in atmospheric deposition over the country, with the highest depositions in the South-Western part of Denmark (Case 3) due to long-range transport contributions from North-Western Europe, but also due to local ammonia deposition associated with the high local emission from the high density livestock farming in this area. (c) 2012 Elsevier Ltd. All rights reserved.
  •  
2.
  • Xu, Shanshan, et al. (författare)
  • Associations of long-term exposure to air pollution and greenness with incidence of chronic obstructive pulmonary disease in Northern Europe : The Life-GAP project
  • 2024
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 257
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prolonged exposure to air pollution has been linked to adverse respiratory health, yet the evidence concerning its association with chronic obstructive pulmonary disease (COPD) is inconsistent. The evidence of a greenness effect on chronic respiratory diseases is limited.Objective: This study aimed to investigate the association between long-term exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (as measured by the normalized difference vegetation index - NDVI) and incidence of self-reported chronic bronchitis or COPD (CB/COPD).Methods: We analyzed data from 5355 adults from 7 centers participating in the Respiratory Health in Northern Europe (RHINE) study. Mean exposures to air pollution and greenness were assessed at available residential addresses in 1990, 2000 and 2010 using air dispersion models and satellite data, respectively. Poisson regression with log person-time as an offset was employed to analyze the association between air pollution, greenness, and CB/COPD incidence, adjusting for confounders.Results: Overall, there were 328 incident cases of CB/COPD during 2010–2023. Despite wide statistical uncertainty, we found a trend for a positive association between NO2 exposure and CB/COPD incidence, with incidence rate ratios (IRRs) per 10 μg/m³ difference ranging between 1.13 (95% CI: 0.90–1.41) in 1990 and 1.18 (95% CI: 0.96–1.45) in 2000. O3 showed a tendency for inverse association with CB/COPD incidence (IRR from 0.84 (95% CI: 0.66–1.07) in 2000 to 0.88 (95% CI: 0.69–1.14) in 2010. No consistent association was found between PM, BC and greenness with CB/COPD incidence across different exposure time windows.Conclusion: Consistent with prior research, our study suggests that individuals exposed to higher concentrations of NO2 may face an elevated risk of developing COPD, although evidence remains inconclusive. Greenness was not associated with CB/COPD incidence, while O3 showed a tendency for an inverse association with the outcome.
  •  
3.
  • Xu, Shanshan, et al. (författare)
  • Associations of long-term exposure to air pollution and greenness with incidence of chronic obstructive pulmonary disease in Northern Europe : The Life-GAP project
  • 2024
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 257
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundProlonged exposure to air pollution has been linked to adverse respiratory health, yet the evidence concerning its association with chronic obstructive pulmonary disease (COPD) is inconsistent. The evidence of a greenness effect on chronic respiratory diseases is limited.ObjectiveThis study aimed to investigate the association between long-term exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (as measured by the normalized difference vegetation index - NDVI) and incidence of self-reported chronic bronchitis or COPD (CB/COPD).MethodsWe analyzed data from 5355 adults from 7 centers participating in the Respiratory Health in Northern Europe (RHINE) study. Mean exposures to air pollution and greenness were assessed at available residential addresses in 1990, 2000 and 2010 using air dispersion models and satellite data, respectively. Poisson regression with log person-time as an offset was employed to analyze the association between air pollution, greenness, and CB/COPD incidence, adjusting for confounders.ResultsOverall, there were 328 incident cases of CB/COPD during 2010–2023. Despite wide statistical uncertainty, we found a trend for a positive association between NO2 exposure and CB/COPD incidence, with incidence rate ratios (IRRs) per 10 μg/m³ difference ranging between 1.13 (95% CI: 0.90–1.41) in 1990 and 1.18 (95% CI: 0.96–1.45) in 2000. O3 showed a tendency for inverse association with CB/COPD incidence (IRR from 0.84 (95% CI: 0.66–1.07) in 2000 to 0.88 (95% CI: 0.69–1.14) in 2010. No consistent association was found between PM, BC and greenness with CB/COPD incidence across different exposure time windows.ConclusionConsistent with prior research, our study suggests that individuals exposed to higher concentrations of NO2 may face an elevated risk of developing COPD, although evidence remains inconclusive. Greenness was not associated with CB/COPD incidence, while O3 showed a tendency for an inverse association with the outcome.
  •  
4.
  • Xu, S. S., et al. (författare)
  • Long-term exposure to low-level air pollution and greenness and mortality in Northern Europe. The Life-GAP project
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been linked to mortality, but there are few studies examining the association with different exposure time windows spanning across several decades. The evidence for the effects of green space and mortality is contradictory.Objective: We investigated all-cause mortality in relation to exposure to particulate matter (PM2.5 and PM10), black carbon (BC), nitrogen dioxide (NO2), ozone (O3) and greenness (normalized difference vegetation index NDVI) across different exposure time windows.Methods: The exposure assessment was based on a combination of the Danish Eulerian Hemispheric Model and the Urban Background Model for the years 1990, 2000 and 2010. The analysis included a complete case dataset with 9,135 participants from the third Respiratory Health in Northern Europe study (RHINE III), aged 40-65 years in 2010, with mortality follow-up to 2021. We performed Cox proportional hazard models, adjusting for potential confounders.Results: Altogether, 327 (3.6 %) persons died in the period 2010-2021. Increased exposures in 1990 of PM2.5, PM10, BC and NO2 were associated with increased all-cause mortality hazard ratios of 1.40 (95 % CI1.04-1.87 per 5 mu g/m3), 1.33 (95 % CI: 1.02-1.74 per 10 mu g/m3), 1.16 (95 % CI: 0.98-1.38 per 0.4 mu g/m3) and 1.17 (95 % CI: 0.92-1.50 per 10 mu g/m3), respectively. No statistically significant associations were observed between air pollution and mortality in other time windows. O3 showed an inverse association with mortality, while no association was observed between greenness and mortality. Adjusting for NDVI increased the hazard ratios for PM2.5, PM10, BC and NO2 exposures in 1990. We did not find significant interactions between greenness and air pollution metrics.Conclusion: Long term exposure to even low levels of air pollution is associated with mortality. Opening up for a long latency period, our findings indicate that air pollution exposures over time may be even more harmful than anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy