SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frostevarg Jan Teknologie doktor 1982 ) "

Sökning: WFRF:(Frostevarg Jan Teknologie doktor 1982 )

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Da Silva, Adrien, et al. (författare)
  • Laser Metal Wire drop-by-drop Deposition: a material and dilution investigation
  • 2021
  • Ingår i: IOP Conference Series: Materials Science and Engineering. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • Additive Manufacturing has become a field of high interest in the industry, mostly due to its strong freedom of design and its flexibility. Numerous Additive Manufacturing techniques exist and present different advantages and disadvantages. The technique investigated in this research is a drop-by-drop deposition alternative to Laser Metal Wire Deposition. This technique is expected to induce a better control over the power input in the material, resulting in a better power efficiency and tailorable material properties. The aim of this research is to investigate selected material properties of the structures produced with the drop-by-drop deposition technique. Multi-drops structures were deposited from 316L, Inconel 625 (NW6625) and AlSi5 (AW4043) wires. Two drop deposition methods were investigated: (i) a contactless recoil pressure driven detachment for 316L and Inconel 625, (ii) a contact-based surface tension driven detachment for AlSi5. A material characterization including optical microscopy, EDS and hardness measurements was performed in transverse and longitudinal cross-sections. The microstructure of the deposited material, the dilution with the substrate and the heat affected zone were analysed. The contactless detachment showed a higher dilution than the contact-based technique due to the laser irradiating the substrate between two drop detachments, which melts the substrate that then mixes with the deposited drops.
  •  
2.
  •  
3.
  • Anthony, Niklas, et al. (författare)
  • Laboratory experiments with a laser-based attachment mechanism for spacecraft at small bodies
  • 2021
  • Ingår i: Acta Astronautica. - : Elsevier. - 0094-5765 .- 1879-2030. ; 189, s. 391-397
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of two sets of experiments that investigate laser-based metal-to-rock attachment techniques. Asteroids and comets have low surface gravity which pose a challenge to landers with moving parts. Such parts can generate torques and forces which may tip the lander over or launch it into deep space. Thus, if a lander on a small body is to have moving parts, the spacecraft must be equipped with an anchoring mechanism. To this end, we sought to use a laser to melt and bind a piece of metal mimicking a part of a spacecraft to a rock mimicking the surface of a typical asteroid. In the first set of experiments, extra material was not fed in during the processing. The second set were performed using a standard wire feeder used in laser welding, which added metal to the experiment during processing. During the first experiments, we discovered that a traditional weld, where two melt pools mix and solidify to form a strong bond, was not possible—the melt pools would not mix, and when they did, the resulting weld was extremely brittle. The second set of experiments resulted in a physico-mechanical bond, where a hole was drilled with a laser, and a wire was melted and fed into the hole. These latter experiments were successful in forming bonds as strong as 115 N. Such an attachment mechanism can also be used to maneuver small boulders on asteroid surfaces, to redirect small, monolithic asteroids, or in space-debris removal.
  •  
4.
  • Anthony, Niklas, et al. (författare)
  • Laser-induced spallation of minerals common on asteroids
  • 2021
  • Ingår i: Acta Astronautica. - : Elsevier. - 0094-5765 .- 1879-2030. ; 182, s. 325-331
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to deflect dangerous small bodies in the Solar System or redirect profitable ones is a necessary and worthwhile challenge. One well-studied method to accomplish this is laser ablation, where solid surface material sublimates, and the escaping gas creates a momentum exchange. Alternatively, laser-induced spallation and sputtering could be a more efficient means of deflection, yet little research has studied these processes in detail. We used a 15-kW Ytterbium fiber laser on samples of olivine, pyroxene, and serpentine (minerals commonly found on asteroids) to induce spallation. We observed the process with a high-speed camera and illumination laser, and used X-ray micro-tomography to measure the size of the holes produced by the laser to determine material removal efficiency. We found that pyroxene will spallate at power densities between 1.5 and 6.0 kW cm−2, serpentine will also spallate at 13.7 kW cm−2, but olivine does not spallate at 1.5 kW cm−2 and higher power densities melt the sample. Laser-induced spallation of pyroxene and serpentine can be two- to three-times more energy efficient (volume removed per unit of absorbed energy) than laser-induced spattering, and over 40x more efficient than laser ablation.
  •  
5.
  • Anthony, Niklas, et al. (författare)
  • Laser processing of minerals common on asteroids
  • 2021
  • Ingår i: Optics and Laser Technology. - : Elsevier. - 0030-3992 .- 1879-2545. ; 135
  • Tidskriftsartikel (refereegranskat)abstract
    • Asteroid mining and redirection are two trends that both can utilize lasers, one to drill and cut, the other to ablate and move. Yet little is known about what happens when a laser is used to process the types of materials we typically expect to find on most asteroids. To shed light on laser processing of asteroid material, we used a 300-W, pulsed Ytterbium fiber laser on samples of olivine, pyroxene, and serpentine, and studied the process with a high-speed camera and illumination laser at 10 000 frames per second. We also measure the sizes of the resulting holes using X-ray micro-tomography to find the pulse parameters which remove the largest amount of material using the least amount of energy. We find that at these power densities, all three minerals will melt and chaotically throw off spatter. Short, low-power pulses can efficiently produce thin, deep holes, and long, high-power pulses are more energy efficient at removing the most amount of material.
  •  
6.
  • Bunaziv, I., et al. (författare)
  • Application of laser-arc hybrid welding of steel for low-temperature service
  • 2019
  • Ingår i: The International Journal of Advanced Manufacturing Technology. - : Springer. - 0268-3768 .- 1433-3015. ; 102:5-8, s. 2601-2613
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-arc hybrid welding (LAHW) is more often used in shipbuilding and oil and gas industries in recent years. Its popularity arises due to many advantages compared to conventional arc welding processes. The laser beam source is used to achieve much higher penetration depths. By adding filler wire to the process area, by means of an arc source, the mechanical properties can be improved, e.g. higher toughness at low temperatures. Therefore, LAHW is a perspective process for low-temperature service. Applicability of LAHW is under concern due to process stability and mechanical properties related to heterogeneous filler wire distribution through the whole weld metal in deep and narrow joints. This can cause reduced mechanical properties in the weld root as well as problems with solidification cracking. The fast cooling rate in the root provides hard and brittle microconstituents lowering toughness at low temperatures. Numerical simulations and experimental observations showed that an increase in heat input from the laser beam is an effective way to reduce the cooling rate, which is also possible by applying preheating.
  •  
7.
  • Bunaziv, Ivan, et al. (författare)
  • Filler metal distribution and processing stability in laser-arc hybrid welding of thick HSLA steel
  • 2020
  • Ingår i: Journal of Manufacturing Processes. - : Elsevier. - 1526-6125. ; 54, s. 228-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Welds made by high power laser beam have deep and narrow geometry. Addition of filler wire by the arc source, forming the laser-arc hybrid welding (LAHW) process, is very important to obtain required mechanical properties. Distribution of molten wire throughout the entire weld depth is of concern since it tends to have low transportation ability to the root. Accurate identification of filler metal distribution is very challenging. Metal-cored wires can provide high density of non-metallic inclusions (NMIs) which are important for acicular ferrite nucleation. Accurate filler distribution can be recognized based on statistical characterization of NMIs in the weld. In the present study, it was found that the amount of filler metal decreased linearly towards the root. The filler metal tends to accumulate in the upper part of the weld and has a steep decrease at 45–55 % depth which also has wavy pattern based on longitudinal cuts. Substantial hardness variation in longitudinal direction was observed, where in the root values can reach > 300 HV. Excessive porosity was generated at 75 % depth due to unstable and turbulent melt flow based on morphology of prior austenite grains. The delicate balance of process parameters is important factor for both process stability and filler metal distribution.
  •  
8.
  • Bunaziv, Ivan, et al. (författare)
  • Porosity and solidification cracking in welded 45 mm thick steel by fiber laser-MAG process
  • 2019
  • Ingår i: Procedia Manufacturing. - : Elsevier. - 2351-9789. ; 36, s. 101-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Porosity and solidification cracking in joining of thick sections are very common issues in deep penetration keyhole laser-arc hybrid welding (LAHW). In the present work, 45 mm thick high strength steel was joined by a double-sided technique. With combined use of fast welding speeds and larger air gap between plates, higher amount of porosity was found because of the dynamic behavior of the keyhole walls. Solidification cracking formed at the centerline in the bottom of the weld due to high-depth-to-width geometrical ratio. Numerical simulations have been performed and showed very high cooling rate and stresses occurred in the root of the deep welds, which corresponds with higher cracking tendency.
  •  
9.
  • Da Silva, Adrien, et al. (författare)
  • Acceleration of metal drops in a laser beam
  • 2021
  • Ingår i: Applied Physics A. - : Springer. - 0947-8396 .- 1432-0630. ; 127:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Different processes require the detachment of metal drops from a solid material using a laser beam as the heat source, for instance laser drop generation or cyclam. These techniques imply that the drops enter the laser beam, which might affect their trajectory. Also, many laser processes such as laser welding or additive manufacturing generate spatters that can be accelerated by the laser beam during flight and create defects on the material. This fundamental study aims at investigating the effects of a continuous power laser beam on the acceleration of intentionally detached drops and unintentionally detached spatters. Two materials were studied: 316L steel and AlSi5 aluminium alloy. High-speed imaging was used to measure the position of the drops and calculate their acceleration to compare it to theoretical models. Accelerations up to 11.2 g could be measured. The contributions of the vapor pressure, the recoil pressure, and the radiation pressure were investigated. The recoil pressure was found to be the main driving effect but other phenomena counteract this acceleration and reduce it by an order of magnitude of one to two. In addition, two different vaporization regimes were observed, resulting respectively in a vapor plume and in a vapor halo around the drop.
  •  
10.
  • Da Silva, Adrien, et al. (författare)
  • Additive Manufacturing by laser-assisted drop deposition from a metal wire
  • 2021
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 209
  • Tidskriftsartikel (refereegranskat)abstract
    • The subject of Additive Manufacturing includes numerous techniques, some of which have reached very high levels of development and are now used industrially. Other techniques such as Micro Droplet Deposition Manufacture are under development and present different manufacturing possibilities, but are employed only for low melting temperature metals. In this paper, the possibility of using a laser-based drop deposition technique for stainless-steel wire is investigated. This technique is expected to be a more flexible alternative to Laser Metal Wire Deposition. Laser Droplet Generation experiments were carried out in an attempt to accurately detach steel drops towards a desired position. High-speed imaging was used to observe drop generation and measure the direction of detachment of the drops. Two drop detachment techniques were investigated and the physical phenomena leading to the drop detachment are explained, wherein the drop weight, the surface tension and the recoil pressure play a major role. Optimised parameters for accurate single drop detachment were identified and then used to build multi-drop tracks. Tracks with an even geometry were produced, where the microstructure was influenced by the numerous drop depositions. The tracks showed a considerably higher hardness than the base wire, exhibiting a relatively homogeneous macro-hardness with a localised softening effect at the interfaces between drops.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (25)
konferensbidrag (5)
doktorsavhandling (2)
annan publikation (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Frostevarg, Jan, Tek ... (34)
Kaplan, Alexander F. ... (13)
Kaplan, Alexander (12)
Da Silva, Adrien (8)
Volpp, Joerg (7)
Robertson, Stephanie ... (5)
visa fler...
Robertson, Stephanie (4)
Powell, John (4)
Anthony, Niklas (4)
Suhonen, Heikki (4)
Granvik, Mikael (4)
Volpp, Jörg (4)
Ramasamy, Anandkumar (4)
Kalfsbeek, Bert (4)
Palmquist, Anders, 1 ... (3)
Akselsen, Odd M. (2)
Wanhainen, Christina (2)
Bunaziv, Ivan (2)
Ren, Xiaobo (2)
Olsson, Rickard (2)
Dewi, Handika Sandra (2)
Powell, J (1)
Branemark, R. (1)
Graf, Thomas (1)
Akselsen, O. M. (1)
Salminen, Antti (1)
Penttilä, Antti (1)
Brånemark, Rickard, ... (1)
Brandau, Benedikt (1)
Brückner, Frank (1)
Lopez, Elena (1)
Bunaziv, I. (1)
Wenner, Sigurd (1)
Lupi, Giorgia (1)
Belelli, Filippo (1)
Bruzzo, Francesco (1)
Maier, Lukas (1)
Pesl, Alexander (1)
Casati, Riccardo (1)
Woizeschke, Peer, Dr ... (1)
Kasvayee, Keivan Ami ... (1)
Zachrisson, Jan (1)
Siltanen, Jukka (1)
Hullberg, Håkan (1)
Fedina, Tatiana (1)
Volpp, Jöerg (1)
Thompson, Cassidy (1)
Prasad, Himani Siva (1)
Brånemark, Rickard (1)
Höfemann, Matthias (1)
visa färre...
Lärosäte
Luleå tekniska universitet (34)
Göteborgs universitet (3)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Teknik (33)
Naturvetenskap (4)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy