SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frosth Sara) "

Sökning: WFRF:(Frosth Sara)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frosth, Sara (författare)
  • A distinct bacterial dysbiosis associated skin inflammation in ovine footrot
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1 beta and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.
  •  
2.
  • Frosth, Sara, et al. (författare)
  • Bovine Digital Dermatitis: Treponema spp. on trimming equipment and chutes - effect of washing and disinfection
  • 2024
  • Ingår i: BMC Veterinary Research. - 1746-6148. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Digital dermatitis (DD) is a contagious bovine foot disease causing reduced animal welfare and negative economic consequences for the farmer. Treponema spp. are the most important causative agents. Studies indicate that trimming equipment can transfer DD-associated treponemes between cows. The aim of this observational study in 22 DD-positive Norwegian dairy herds was to investigate the risk of transferring Treponema spp. with trimming equipment and chutes after claw trimming, and after washing and disinfection. Swabs from the trimming equipment and chutes were collected from nine different locations, at five different time points. Bacterial DNA was extracted from 647 swabs and analysed by qPCR for Treponema spp. In addition, 172 swabs taken immediately after trimming, were analysed by a multiplex qPCR targeting T. phagedenis, T. pedis and T. medium/vincentii. Biopsy sampling from DD lesions was performed on cows in the same herds during trimming. Altogether 109 biopsies were analysed by FISH for confirmation of the DD diagnosis and identification of Treponema phylotypes (PTs). Results High numbers of Treponema spp. were detected from all nine locations on the trimming equipment and chutes immediately after trimming, and T. phagedenis was detected on two or more locations in all but two herds, 1 and 19. There was a decline in the amount of Treponema spp. after washing and disinfection. The belly belt, the cuff, and the footrest on the chute had the highest proportion of positive samples after disinfection. The belly belt had the highest copy numbers of all nine locations (median = 7.9, max = 545.1). No Treponema spp. was detected on the hoof knives after disinfection. Treponema phagedenis, T. pedis, and Treponema phylotype 3 (T. refringens) were detected by FISH analysis of the biopsies. Treponema phagedenis was detected in biopsies from all herds except 1 and 19. Conclusion This study shows that DD-associated Treponema spp. were present on the trimming equipment and chutes after trimming cows in DD-positive herds. Washing and disinfection reduced the load of Treponema spp. However, large differences in Treponema spp. between different locations were documented. High copy numbers on the grinder and the chute after disinfection, indicates that sufficient cleaning and disinfection of these locations is difficult, and that passive transfer of DD-associated treponemes (viable or not) is possible.
  •  
3.
  • Frosth, Sara, et al. (författare)
  • Characterisation of Dichelobacter nodosus and detection of Fusobacterium necrophorum and Treponema spp. in sheep with different clinical manifestations of footrot
  • 2015
  • Ingår i: Veterinary Microbiology. - : Elsevier BV. - 0378-1135 .- 1873-2542. ; 179, s. 82-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to determine the proportion of Dichelobacter nodosus, Fusobacterium necrophorum and Treponema spp. in sheep with different clinical manifestations of footrot compared to healthy sheep both at flock and individual level. The second aim was to characterise D. nodosus with respect to virulence, presence of intA gene and the serogroups.Swab samples (n = 1000) from footrot-affected (n = 10) and healthy flocks (n = 10) were analysed for the presence of D. nodosus, F. necrophorum and Treponema spp. by real-time PCR and culturing (D. nodosus only). Dichelobacter nodosus isolates (n = 78) and positive swabs (n = 474) were analysed by real-time PCR for the aprV2/B2 and the intA genes and by PCR for the fimA gene (isolates only).D. nodosus was more commonly found in flocks affected with footrot than in clinically healthy flocks. A significant association was found between feet with severe footrot lesions and the aprV2 gene and between feet with moderate or no lesions and the aprB2 gene, respectively. F. necrophorum was more commonly found in flocks with footrot lesions than in flocks without lesions. No significant association was found between sheep flocks affected with footrot and findings of Treponema spp. or the intA gene. Benign D. nodosus of six different serogroups was detected in twelve flocks and virulent D. nodosus of serogroup G in one.In conclusion, D. nodosus and F. necrophorum were more commonly found in feet with footrot than in healthy feet. The majority of D. nodosus detected was benign, while virulent D. nodosus was only detected in a single flock. (C) 2015 The Authors. Published by Elsevier B.V.
  •  
4.
  •  
5.
  • Frosth, Sara, et al. (författare)
  • Detection of Campylobacter spp. in water by dead-end ultrafiltration and application at farm level
  • 2019
  • Ingår i: Journal of Applied Microbiology. - : Oxford University Press (OUP). - 1364-5072 .- 1365-2672. ; 127, s. 1270-1279
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The purposes were to evaluate the detection of low levels of Campylobacter in water by dead-end ultrafiltration (DEUF) to determine the sensitivity and suitability for use under field condition. Methods and Results The DEUF technique followed by detection according to ISO 10272 was tested on artificially and naturally contaminated water. Campylobacter were detected in all samples spiked with more than 10 CFU 60 l(-1) and in four of nine samples with a concentration below 10 CFU 60 l(-1) water. Naturally contaminated water from five different broiler producers was analysed. Campylobacter were detected in four of 12 samples from ponds near the houses and in three of 24 samples from water pipes inside the broiler houses, but not in tap water sampled at the entrance of the broiler houses. Conclusions The results indicate that DEUF is useful for detection of low numbers of Campylobacter in large volumes of water. Significance and Impact of the Study Contaminated water is an important source for transmission of Campylobacter to broilers and humans. The concentration of Campylobacter is usually low with a high level of background microbiota. This study shows the advantages of DEUF both in the laboratory and under field conditions.
  •  
6.
  • Frosth, Sara, et al. (författare)
  • Development of a multiplex quantitative PCR assay for simultaneous detection of Treponema phagedenis, Treponema pedis, Treponema medium, and 'Treponema vincentii' and evaluation on bovine digital dermatitis biopsies
  • 2023
  • Ingår i: Veterinary Research Communications. - 0165-7380 .- 1573-7446. ; 47, s. 1937–1947-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bovine digital dermatitis (BDD) is a contagious foot disease with worldwide occurrence in dairy cattle. The disease causes lameness and reduced animal welfare as well as economic losses for the farmer. The aetiology is not fully established but associations have been made with Treponema spp. Today, BDD diagnosis is mainly based on visual inspection of cattle feet, therefore this study aimed to develop a multiplex quantitative PCR (qPCR) assay targeting Treponema phagedenis, Treponema pedis, Treponema medium, and 'Treponema vincentii' to aid in diagnosis. The assay was tested for specificity on 53 bacterial strains and in silico on 168 Treponema spp. genomes, representative of at least 24 species. In addition, 37 BDD biopsies were analysed and the results compared to another qPCR assay published during the study period, which we modified by combining into a multiplex qPCR. The qPCR developed herein had a detection limit of 10 copies of each target species per PCR reaction. Both qPCR assays showed 100% specificity when tested on bacterial strains, but the qPCR developed in this study detected 3.4% more T. phagedenis-positive biopsies of lesion category M1-M4.1 than the modified assay. To conclude, the developed qPCR assay detecting T. phagedenis, T. pedis, T. medium, and 'T. vincentii' has high analytical sensitivity and specificity and provides a useful complementary tool for diagnosis and epidemiological studies of BDD. The assay could possibly also be used for contagious ovine digital dermatitis (CODD) as similar bacteriological profiles have been suggested for BDD and CODD, especially regarding certain Treponema spp.
  •  
7.
  • Frosth, Sara (författare)
  • Dichelobacter nodosus and footrot in Swedish sheep : increased knowledge and improved laboratory diagnostics
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ovine footrot is a contagious bacterial disease primarily caused by Dichelobacter nodosus. Footrot affects the feet of sheep and is characterised by two major clinical presentations. The milder form consists of inflammation confined to the interdigital space (interdigital dermatitis or benign footrot) and the more severe form includes underrunning of the hoof horn (underrunning or virulent footrot). Disease severity is dependent on several factors including the virulence of the D. nodosus strain, environmental conditions, farming practices, host susceptibility, and co-infecting bacteria. In Sweden, ovine footrot was first diagnosed in 2004, but fast and sensitive diagnostics for D. nodosus were not available. Likewise, knowledge was missing about the D. nodosus strains and co-infection with other lameness-associated bacteria. Hence the overall aim of this thesis project was to increase the knowledge about ovine footrot in Swedish sheep and to improve laboratory diagnostics for it. In this thesis project, sensitive and specific real-time PCR methods to detect and discriminate between virulent and benign strains of D. nodosus were developed and used to characterise D. nodosus from Swedish sheep. The results showed that most of the Swedish D. nodosus are benign and that the virulent type is uncommon. D. nodosus isolates from seven other countries included in the study showed that the D. nodosus genome is highly conserved and that it exists as a globally distributed bimodal population. Furthermore, D. nodosus is mainly associated with the early stages of footrot whereas Fusobacterium necrophorum is associated with the later ones. This confirms the suggested role of F. necrophorum as an opportunistic pathogen rather than the primary pathogen. Although previously proposed, there was no evidence of Treponema spp. in disease development. Finally, a sample pooling method was developed to meet the demands for cost-efficiency in control programs. The method allows samples to be analysed in groups of five with no loss of sensitivity compared to individual samples. It has been implemented in the Swedish Footrot Control Program as a result of this thesis project.
  •  
8.
  • Frosth, Sara (författare)
  • First report on outbreaks of contagious ovine digital dermatitis in Sweden
  • 2021
  • Ingår i: Acta Veterinaria Scandinavica. - : Springer Science and Business Media LLC. - 0044-605X .- 1751-0147. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Contagious ovine digital dermatitis (CODD) is considered widespread in the United Kingdom but was only recently reported in mainland Europe, as one outbreak in Germany. The disease can cause severe lameness in sheep and, if left untreated, can lead to total avulsion of the hoof capsule. CODD is considered to have multifactorial and polymicrobial aetiology, in which Treponema medium/Treponema vincentii phylogroup, Treponema phagedenis phylogroup and Treponema pedis are believed to play a significant role. Footrot and CODD have a close connection and footrot is considered an important risk factor for CODD. Case Lameness, mainly in lambs aged 1.5 months, was reported on a farm in Sweden in spring 2018. The animals showed no signs of footrot and the causative agent, Dichelobacter nodosus, was not found. CODD was suspected but not confirmed, and the clinical signs subsided when the animals were turned out to pasture. In February 2019, young lambs and ewes were lame again and this time CODD was diagnosed. After treatment, the whole flock was slaughtered later in 2019 due to CODD. In autumn 2020, CODD was diagnosed on another Swedish farm, this time as part of a mixed infection with D. nodosus. The animals were treated with footbaths in zinc sulphate 10% by the farmer, but lameness recurred soon afterwards. The animals were treated, but ultimately the whole flock was slaughtered. No connection was found between the two farms. Conclusion The first two outbreaks of CODD in Sweden have been diagnosed and are described in this case report. If it spreads, CODD could have a negative impact on the Swedish sheep industry in terms of animal welfare, production and antibiotic use.
  •  
9.
  • Frosth, Sara (författare)
  • Genomic Evidence for a Globally Distributed, Bimodal Population in the Ovine Footrot Pathogen Dichelobacter nodosus
  • 2014
  • Ingår i: mBio. - 2150-7511. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Footrot is a contagious, debilitating disease of sheep, causing major economic losses in most sheep-producing countries. The causative agent is the Gram-negative anaerobe Dichelobacter nodosus. Depending on the virulence of the infective bacterial strain, clinical signs vary from a mild interdigital dermatitis (benign footrot) to severe underrunning of the horn of the hoof (virulent footrot). The aim of this study was to investigate the genetic relationship between D. nodosus strains of different phenotypic virulences and between isolates from different geographic regions. Genome sequencing was performed on 103 D. nodosus isolates from eight different countries. Comparison of these genome sequences revealed that they were highly conserved, with >95% sequence identity. However, single nucleotide polymorphism analysis of the 31,627 nucleotides that were found to differ in one or more of the 103 sequenced isolates divided them into two distinct clades. Remarkably, this division correlated with known virulent and benign phenotypes, as well as with the single amino acid difference between the AprV2 and AprB2 proteases, which are produced by virulent and benign strains, respectively. This division was irrespective of the geographic origin of the isolates. However, within one of these clades, isolates from different geographic regions generally belonged to separate clusters. In summary, we have shown that D. nodosus has a bimodal population structure that is globally conserved and provide evidence that virulent and benign isolates represent two distinct forms of D. nodosus strains. These data have the potential to improve the diagnosis and targeted control of this economically significant disease.IMPORTANCE The Gram-negative anaerobic bacterium Dichelobacter nodosus is the causative agent of ovine footrot, a disease of major importance to the worldwide sheep industry. The known D. nodosus virulence factors are its type IV fimbriae and extracellular serine proteases. D. nodosus strains are designated virulent or benign based on the type of disease caused under optimal climatic conditions. These isolates have similar fimbriae but distinct extracellular proteases. To determine the relationship between virulent and benign isolates and the relationship of isolates from different geographical regions, a genomic study that involved the sequencing and subsequent analysis of 103 D. nodosus isolates was undertaken. The results showed that D. nodosus isolates are highly conserved at the genomic level but that they can be divided into two distinct clades that correlate with their disease phenotypes and with a single amino acid substitution in one of the extracellular proteases.
  •  
10.
  • Frosth, Sara, et al. (författare)
  • Identification of Transmission Routes of Campylobacter and On-Farm Measures to Reduce Campylobacter in Chicken
  • 2020
  • Ingår i: Pathogens. - : MDPI AG. - 2076-0817. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • An in-depth analysis was performed on Swedish broiler producers that had delivered chickens with Campylobacter to slaughter over several years, in order to identify possible transmission routes and formulate effective measures to prevent chickens being colonized with Campylobacter. Between 2017 and 2019, 626 samples were collected at farm level and Campylobacter was isolated from 133 (21.2%). All C. jejuni and C. coli isolated from these samples were whole-genome sequenced, together with isolates from the corresponding cecum samples at slaughter (n = 256). Core genome multi-locus sequence typing (cgMLST) analysis, using schemes consisting of 1140 and 529 genes for C. jejuni and C. coli, respectively, revealed that nearby cattle, contaminated drinking water, water ponds, transport crates, and parent flocks were potential reservoirs of Campylobacter. A novel feature compared with previous studies is that measures were implemented and tested during the work. These contributed to a nationwide decrease in Campylobacter-positive flocks from 15.4% in 2016 to 4.6% in 2019, which is the lowest ever rate in Sweden. To conclude, there are different sources and routes of Campylobacter transmission to chickens from different broiler producers, and individual measures must be taken by each producer to prevent Campylobacter colonization of chickens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy