SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fukagata Koji) "

Sökning: WFRF:(Fukagata Koji)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atzori, Marco, 1992-, et al. (författare)
  • A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • For adverse-pressure-gradient turbulent boundary layers, the study of integral skin-friction contributions still poses significant challenges. Beyond questions related to the integration boundaries and the derivation procedure, which have been thoroughly investigated in the literature, an important issue is how different terms should be aggregated. The nature of these flows, which exhibit significant in-homogeneity in the streamwise direction, usually results in cancellation between several contributions with high absolute values. We propose a formulation of the identity derived by Fukagata, Iwamoto \& Kasagi (Phys. Fluids, vol. 14, 2002, pp. 73--76), which we obtained from the convective form of the governing equations. A new skin-friction contribution is defined, considering wall-tangential convection and pressure gradient together. This contribution is related to the evolution of the dynamic pressure in the mean flow. The results of the decomposition are examined for a broad range of pressure-gradient conditions and different flow-control strategies. We found that the new formulation of the identity allows to readily identify the different regimes of near-equilibrium conditions and approaching separation. It also provides a more effective description of control effects. A similar aggregation between convection and pressure-gradient terms is also possible for any other decomposition where in-homogeneity contributions are considered explicitly. 
  •  
2.
  • Atzori, Marco, et al. (författare)
  • A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers
  • 2023
  • Ingår i: International Journal of Heat and Fluid Flow. - : Elsevier BV. - 0142-727X .- 1879-2278. ; 101
  • Tidskriftsartikel (refereegranskat)abstract
    • For adverse-pressure-gradient turbulent boundary layers, the study of integral skin-friction contributions still poses significant challenges. Beyond questions related to the integration boundaries and the derivation procedure, which have been thoroughly investigated in the literature, an important issue is how different terms should be aggregated. The nature of these flows, which exhibit significant in-homogeneity in the streamwise direction, usually results in cancellation between several contributions with high absolute values. We propose a formulation of the identity derived by Fukagata et al. (2002), which we obtained from the convective form of the governing equations. A new skin-friction contribution is defined, considering wall-tangential convection and pressure gradient together. This contribution is related to the evolution of the dynamic pressure in the mean flow. The results of the decomposition are examined for a broad range of pressure-gradient conditions and different flow-control strategies. We found that the new formulation of the identity allows to readily identify the different regimes of near-equilibrium conditions and approaching separation. It also provides a more effective description of control effects. A similar aggregation between convection and pressure-gradient terms is also possible for any other decomposition where in-homogeneity contributions are considered explicitly.
  •  
3.
  • Atzori, Marco, et al. (författare)
  • A New Point of View On Skin-Friction Contributions ni Adverse-Pressure-Gradient Turbulent Boundary Layers
  • 2022
  • Ingår i: 12th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2022. - : International Symposium on Turbulence and Shear Flow Phenomena, TSFP.
  • Konferensbidrag (refereegranskat)abstract
    • Skin-friction decompositions such as the so-called FIK identity (Fukagata et al., 2002) are useful tools in identifying relevant contributions to the friction, but may also lead to results difficult to interpret when the total friction is recovered from cancellation of multiple terms with large values. We propose a new formulation of the FIK contributions related to streamwise inhomogeneity, which is derived from the convective form of the momentum equation and using the concept of dynamic pressure. We examine turbulent boundary layers subjected to various pressure-gradient conditions, including cases with drag-reducing control. The new formulation distinguishes more precisely the roles of the free-stream pressure distribution, wall-normal convection, and turbulent fluctuations. Our results allow to identify different regimes in adverse-pressure-gradient turbulent boundary layers, corresponding to different proportions of the various contributions, and suggest a possible direction towards studying the onset of mean separation.
  •  
4.
  •  
5.
  •  
6.
  • Ikeya, Yuta, et al. (författare)
  • Towards a theoretical model of heat transfer for hot-wire anemometry close to solid walls
  • 2017
  • Ingår i: International Journal of Heat and Fluid Flow. - : Elsevier. - 0142-727X .- 1879-2278. ; 68, s. 248-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot-wire anemometry readings where the sensor is close to a solid wall become erroneous due to additional heat losses to the wall. Here we examine this effect by means of experiments and numerical simulations. Measurements in both quiescent air as well as laminar and turbulent boundary layers confirmed the influences of parameters such as wall conductivity, overheat ratio and probe dimensions on the hot-wire output voltage. Compared to previous studies, the focus lies not only on the streamwise mean velocity, but also on its fluctuations. The accompanying two-dimensional steady numerical simulation allowed a qualitative discussion of the problem and furthermore mapped the temperature field around the wire for different wall materials. Based on these experimental and numerical results, a theoretical model of the heat transfer from a heated wire close to a solid wall is proposed that accounts for the contributions from both convection and conduction.
  •  
7.
  •  
8.
  •  
9.
  • Morimoto, Masaki, et al. (författare)
  • Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression
  • 2022
  • Ingår i: Physica D. - : Elsevier BV. - 0167-2789 .- 1872-8022. ; 440
  • Tidskriftsartikel (refereegranskat)abstract
    • We use Gaussian stochastic weight averaging (SWAG) to assess the epistemic uncertainty associated with neural-network-based function approximation relevant to fluid flows. SWAG approximates a posterior Gaussian distribution of each weight, given training data, and a constant learning rate. Having access to this distribution, it is able to create multiple models with various combinations of sampled weights, which can be used to obtain ensemble predictions. The average of such an ensemble can be regarded as the 'mean estimation', whereas its standard deviation can be used to construct 'confidence intervals', which enable us to perform uncertainty quantification (UQ) with regard to the training process of neural networks. We utilize representative neural-network-based function approximation tasks for the following cases: (i) a two-dimensional circular-cylinder wake; (ii) the DayMET dataset (maximum daily temperature in North America); (iii) a three-dimensional square-cylinder wake; and (iv) urban flow, to assess the generalizability of the present idea for a wide range of complex datasets. SWAG-based UQ can be applied regardless of the network architecture, and therefore, we demonstrate the applicability of the method for two types of neural networks: (i) global field reconstruction from sparse sensors by combining convolutional neural network (CNN) and multi-layer perceptron (MLP); and (ii) far-field state estimation from sectional data with two-dimensional CNN. We find that SWAG can obtain physically-interpretable confidence-interval estimates from the perspective of epistemic uncertainty. This capability supports its use for a wide range of problems in science and engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy