SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fukuzawa S) "

Sökning: WFRF:(Fukuzawa S)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sanchez-Gonzalez, A., et al. (författare)
  • Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL
  • 2015
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 48:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.
  •  
3.
  • Fukuzawa, H., et al. (författare)
  • Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses
  • 2013
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 110:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xen+ with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n >= 24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers. DOI: 10.1103/PhysRevLett.110.173005
  •  
4.
  •  
5.
  • Mondal, S., et al. (författare)
  • Photoelectron angular distributions for the two-photon sequential double ionization of xenon by ultrashort extreme ultraviolet free electron laser pulses
  • 2013
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon atoms are double-ionized by sequential two-photon absorption by ultrashort extreme ultraviolet free-electron laser pulses with a photon energy of 23.0 and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The angular distributions of photoelectrons generated by two-photon double ionization are obtained using velocity map imaging. The results are reproduced reasonably well by the present theoretical calculations within the multi-configurational Dirac-Fock approach.
  •  
6.
  • Motomura, K., et al. (författare)
  • Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by X-ray free-electron laser pulses from SACLA
  • 2013
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated multiphoton multiple ionization of argon and xenon atoms at 5 keV using a new x-ray free electron laser (XFEL) facility, the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan. The experimental results are compared with the new theoretical results presented here. The absolute fluence of the XFEL pulse has been determined with the help of the calculations utilizing two-photon processes in the argon atom. The high charge states up to +22 observed for Xe in comparison with the calculations point to the occurrence of sequential L-shell multiphoton absorption and of resonance-enabled x-ray multiple ionization.
  •  
7.
  • Tachibana, T., et al. (författare)
  • Nanoplasma Formation by High Intensity Hard X-rays
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at similar to 5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo-and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.
  •  
8.
  • Takanashi, T, et al. (författare)
  • Time-Resolved Measurement of Interatomic Coulombic Decay Induced by Two-Photon Double Excitation of Ne2
  • 2017
  • Ingår i: Physical Review Letters. - 0031-9007. ; 118:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The hitherto unexplored two-photon doubly excited states [Ne∗(2p-13s)]2 were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne2+ ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.
  •  
9.
  • Alonso-Mori, R., et al. (författare)
  • Towards characterization of photo-excited electron transfer and catalysis in natural and artificial systems using XFELs
  • 2016
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 194, s. 621-638
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting X-ray diffraction data and X-ray emission spectra, using an energy dispersive spectrometer, at ambient conditions, and used this approach to study the room temperature structure and intermediate states of the photosynthetic water oxidizing metallo-protein, photosystem II. Moreover, we have also used this setup to simultaneously collect the X-ray emission spectra from multiple metals to follow the ultrafast dynamics of light-induced charge transfer between multiple metal sites. A Mn-Ti containing system was studied at an XFEL to demonstrate the efficacy and potential of this method.
  •  
10.
  • Berrah, N., et al. (författare)
  • Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization
  • 2019
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 15, s. 1279-1283
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C60), exposed to 640eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20fs) X-ray pump pulse, the fragmentation of C60 is considerably delayed. This work uncovers the persistence of the molecular structure of C60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy