SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Funnell Nicholas P.) "

Sökning: WFRF:(Funnell Nicholas P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • B. Brant Carvalho, Paulo H., 1990-, et al. (författare)
  • Neutron scattering study of polyamorphic THF·17(H2O) : toward a generalized picture of amorphous states and structures derived from clathrate hydrates
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 25:21, s. 14981-14991
  • Tidskriftsartikel (refereegranskat)abstract
    • From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF·17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77-140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, VHDA, upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third form, recovered amorphous (RA). Results from neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF·17H2O solution (∼2.5 M). Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ∼23H2O. The local water structure in HDA is reminiscent of pure HDA-ice featuring 5-coordinated H2O. In VHDA, the hydration structure of HDA is maintained but the local water structure is densified and resembles pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ∼18 H2O molecules and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous.
  •  
2.
  • Barros Brant Carvalho, Paulo Henrique, et al. (författare)
  • Neutron scattering study of polyamorphic THF ∙ (H2O)17 – toward a generalized picture of amorphous states and structures derived from clathrate hydrates
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • From crystalline tetrahydrofuran clathrate hydrate, THF-CH (THF ∙ 17H2O, cubic structure II), three distinct polyamorphs can be derived. First, THF-CH undergoes pressure-induced amorphization when pressurized to 1.3 GPa in the temperature range 77–140 K to a form which, in analogy to pure ice, may be called high-density amorphous (HDA). Second, HDA can be converted to a densified form, very-HDA (VHDA), upon heat-cycling at 1.8 GPa to 180 K. Decompression of VHDA to atmospheric pressure below 130 K produces the third, recovered amorphous (RA) form. Results from a compilation of neutron scattering experiments and molecular dynamics simulations provide a generalized picture of the structure of amorphous THF hydrates with respect to crystalline THF-CH and liquid THF ∙ 17H2O solution (~2.5 M). The calculated density of (only in situ observable) HDA and VHDA at 2 GPa and 130 K is 1.287 and 1.328 g/cm3, respectively, whereas that of RA (at 1 atm) is 1.081 g/cm3. Although fully amorphous, HDA is heterogeneous with two length scales for water-water correlations (less dense local water structure) and guest-water correlations (denser THF hydration structure). The hydration structure of THF is influenced by guest-host hydrogen bonding. THF molecules maintain a quasiregular array, reminiscent of the crystalline state, and their hydration structure (out to 5 Å) constitutes ~23 H2O. The local water structure in HDA is reminiscent of pure HDA-ice, featuring 5-coordinated H2O. In VHDA, this structure is maintained but the local water structure is densified to resemble pure VHDA-ice with 6-coordinated H2O. The hydration structure of THF in RA constitutes ~18 H2O and the water structure corresponds to a strictly 4-coordinated network, as in the liquid. Both VHDA and RA can be considered as homogeneous, solid solutions of THF and water. The local water structure of water-rich (1:17) amorphous CHs resembles most that of the corresponding amorphous water ices when compared to guest-rich CHs, e.g., Ar ∙ ~6H2O. The proposed significance of different contributions of water local environments presents a simple view to justify neutron structure factor features.
  •  
3.
  • Boström, Hanna L. B., 1991-, et al. (författare)
  • The pressure response of Jahn–Teller-distorted Prussian blue analogues
  • 2024
  • Ingår i: Chemical Science. - 2041-6520 .- 2041-6539. ; 15:9, s. 3155-3164
  • Tidskriftsartikel (refereegranskat)abstract
    • Jahn–Teller (JT) distorted CuII-containing compounds often display interesting structural and functional behaviour upon compression. We use high-pressure X-ray and neutron diffraction to investigate four JT-distorted Prussian blue analogues: Cu[Co(CN)6]0.67, CuPt(CN)6, and ACuCo(CN)6 (A = Rb, Cs), where the first two were studied in both their hydrated and dehydrated forms. All compounds are less compressible than the JT-inactive MnII-based counterparts, indicating a coupling between the electronic and mechanical properties. The effect is particularly strong for Cu[Co(CN)6]0.67, where the local JT distortions are uncorrelated (so-called orbital disorder). This sample amorphises at 0.5 GPa when dehydrated. CuPt(CN)6 behaves similarly to the MnII-analogues, with phase transitions at around 1 GPa and low sensitivity to water. For ACuCo(CN)6, the JT distortions reduce the propensity for phase transitions, although RbCuCo(CN)6 transitions to a new phase (P2/m) around 3 GPa. Our results have a bearing on both the topical Prussian blue analogues and the wider field of flexible frameworks.
  •  
4.
  • Boström, Hanna, et al. (författare)
  • Probing the Influence of Defects, Hydration, and Composition on Prussian Blue Analogues with Pressure
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:9, s. 3544-3554
  • Tidskriftsartikel (refereegranskat)abstract
    • The vast compositional space of Prussian blue analogues (PBAs), formula A(x)M[M'(CN)(6)](y)center dot nH(2)O, allows for a diverse range of functionality. Yet, the interplay between composition and physical properties-e.g., flexibility and propensity for phase transitions-is still largely unknown, despite its fundamental and industrial relevance. Here we use variable-pressure X-ray and neutron diffraction to explore how key structural features, i.e., defects, hydration, and composition, influence the compressibility and phase behavior of PBAs. Defects enhance the flexibility, manifesting as a remarkably low bulk modulus (B-0 approximate to 6 GPa) for defective PBAs. Interstitial water increases B-0 and enables a pressure-induced phase transition in defective systems. Conversely, hydration does not alter the compressibility of stoichiometric MnPt(CN)(6), but changes the high-pressure phase transitions, suggesting an interplay between low-energy distortions. AMnCo(CN)(6) (A(I) = Rb, Cs) transition from F (4) over bar 3m to P (4) over bar n2 upon compression due to octahedral tilting, and the critical pressure can be tuned by the A-site cation. At 1 GPa, the symmetry of Rb0.87Mn[Co(CN)(6)](0.91) is further lowered to the polar space group Pn by an improper ferroelectric mechanism. These fundamental insights aim to facilitate the rational design of PBAs for applications within a wide range of fields.
  •  
5.
  • Brant Carvalho, Paulo H. B., et al. (författare)
  • Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate
  • 2019
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 150:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The type II clathrate hydrate (CH) THF center dot 17 H2O (THF = tetrahydrofuran) is known to amorphize on pressurization to similar to 1.3 GPa in the temperature range 77-140 K. This seems to be related to the pressure induced amorphization (PIA) of hexagonal ice to high density amorphous (HDA) ice. Here, we probe the PIA of THF-d(8)center dot 17 D2O (TDF-CD) at 130 K by in situ thermal conductivity and neutron diffraction experiments. Both methods reveal amorphization of TDF-CD between 1.1 and 1.2 GPa and densification of the amorphous state on subsequent heating from 130 to 170 K. The densification is similar to the transition of HDA to very-high-density-amorphous ice. The first diffraction peak (FDP) of the neutron structure factor function, S(Q), of amorphous TDF-CD at 130 K appeared split. This feature is considered a general phenomenon of the crystalline to amorphous transition of CHs and reflects different length scales for D-D and D-O correlations in the water network and the cavity structure around the guest. The maximum corresponding to water-water correlations relates to the position of the FDP of HDA ice at similar to 1 GPa. Upon annealing, the different length scales for water-water and water-guest correlations equalize and the FDP in the S(Q) of the annealed amorph represents a single peak. The similarity of local water structures in amorphous CHs and amorphous ices at in situ conditions is confirmed from molecular dynamics simulations. In addition, these simulations show that THF guest molecules are immobilized and retain long-range correlations as in the crystal.
  •  
6.
  • Cliffe, Matthew J., et al. (författare)
  • Correlated defect nanoregions in a metal-organic framework
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 4176-
  • Tidskriftsartikel (refereegranskat)abstract
    • Throughout much of condensed matter science, correlated disorder is a key to material function. While structural and compositional defects are known to exist within a variety of metal-organic frameworks (MOFs), the prevailing understanding is that these defects are only ever included in a random manner. Here we show-using a combination of diffuse scattering, electron microscopy, anomalous X-ray scattering and pair distribution function measurements-that correlations between defects can in fact be introduced and controlled within a hafnium terephthalate MOF. The nanoscale defect structures that emerge are an analogue of correlated Schottky vacancies in rocksalt-structured transition metal monoxides and have implications for storage, transport, optical and mechanical responses. Our results suggest how the diffraction behaviour of some MOFs might be reinterpreted, and establish a strategy of exploiting correlated nanoscale disorder as a targetable and desirable motif in MOF design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy