SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Furuya Kenji) "

Sökning: WFRF:(Furuya Kenji)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhat, Bratati, et al. (författare)
  • Chemical Evolution of Some Selected Complex Organic Molecules in Low-mass Star-forming Regions
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 958:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The destiny of complex organic molecules (COMs) in star-forming regions is interlinked with various evolutionary phases. Therefore, identifying these species in diversified environments of identical star-forming regions would help to understand their physical and chemical heritage. We identified multiple COMs utilizing the Large Program Astrochemical Surveys At Institut de Radio Astronomie Millimétrique (IRAM) data, dedicated to chemical surveys in Sun-like star-forming regions with the IRAM 30 m telescope. It was an unbiased survey in the millimeter regime, covering the prestellar core, protostar, outflow region, and protoplanetary disk phase. Here, we report the transitions of seven COMs, namely, methanol (CH3OH), acetaldehyde (CH3CHO), methyl formate (CH3OCHO), ethanol (C2H5OH), propynal (HCCCHO), dimethyl ether (CH3OCH3), and methyl cyanide (CH3CN) in sources L1544, B1-b, IRAS4A, and SVS13A. We found a trend among these species from the derived abundances using the rotational diagram method and Monte Carlo Markov chain fitting. We have found that the abundances of all of the COMs, except for HCCCHO, increase from the L1544 (prestellar core) and peaks at IRAS16293-2422 (class 0 phase). It is noticed that the abundance of these molecules correlates with the luminosity of the sources. The obtained trend is also visible from the previous interferometric observations and considering the beam dilution effect.
  •  
2.
  • Furuya, Kenji, et al. (författare)
  • Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4994-5005
  • Tidskriftsartikel (refereegranskat)abstract
    • Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N I), molecular nitrogen (N 2 ), and icy N-bearing molecules, such as NH 3 and N 2 . NI is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of NI in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearingmolecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed.We conclude that the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/ submillimeter Array observations with reasonable integration times, at least towards IRAS 16293-2422, where high molecular column densities are expected.
  •  
3.
  • Jensen, S. S., et al. (författare)
  • ALMA observations of doubly deuterated water: Inheritance of water from the prestellar environment
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D2O/HDO and HDO/H2O ratios are a powerful way to trace the chemical evolution of water and, in particular, determine whether the D/H ratio is inherited from the molecular cloud or established locally. Aims. We seek to determine the D2O column density and derive the D2O/HDO ratios in the warm region toward the low-mass Class 0 sources B335 and L483. The results are compared with astrochemical models and previous observations to determine their implications for the chemical evolution of water. Methods. We present ALMA observations of the D2O 11,0-10,1 transition at 316.8 GHz toward B335 and L483 at 0.′′5 ( 100 au) resolution, probing the inner warm envelope gas. The column densities of D2O, HDO, and H218O are determined by synthetic spectrum modeling and direct Gaussian fitting, under the assumption of a single excitation temperature and similar spatial extent for the three water isotopologs. Results. D2O is detected toward both sources in the inner warm envelope. The derived D2O/HDO ratio is (1.0 ± 0.2) × 10-2 for L483 and (1.4 ± 0.1) × 10-2 for B335. These values indicate that the D2O/HDO ratio is higher than the HDO/H2O ratios by a factor of 2 toward both sources. Conclusions. The high D2O/HDO ratios are a strong indication of chemical inheritance of water from the prestellar phase down to the inner warm envelope. This implies that the local cloud conditions in the prestellar phase, such as temperatures and timescales, determine the water chemistry at later stages and could provide a source of chemical differentiation in young systems. In addition, the observed D2O/H2O ratios support an observed dichotomy in the deuterium fractionation of water toward isolated and clustered protostars, namely, a higher D/H ratio toward isolated sources.
  •  
4.
  • Mondal, Suman Kumar, et al. (författare)
  • Is There Any Linkage between Interstellar Aldehyde and Alcohol?
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 922:2
  • Tidskriftsartikel (refereegranskat)abstract
    • It is speculated that there might be some linkage between interstellar aldehydes and their corresponding alcohols. Here an observational study and astrochemical modeling are coupled together to illustrate the connection between them. The ALMA cycle 4 data of a hot molecular core, G10.47+0.03, are utilized for this study. Various aldehydes (acetaldehyde, propanal, and glycolaldehyde), alcohols (methanol and ethylene glycol), and a ketone (acetone) are identified in this source. The excitation temperatures and column densities of these species were derived via the rotation diagram method assuming local thermodynamic equilibrium conditions. An extensive investigation is carried out to understand the formation of these species. Six pairs of aldehyde-alcohol are considered for this study: (i) methanal and methanol, (ii) ethanal and ethanol, (iii) propanal and 1-propanol, (iv) propenal and allyl alcohol, (v) propynal and propargyl alcohol, and (vi) glycolaldehyde and ethylene glycol. One pair of ketone-alcohol (acetone and isopropanol) and ketene-alcohol (ethenone and vinyl alcohol) are also considered. Two successive hydrogenation reactions in the ice phase are examined to form these alcohols from aldehydes, ketone, and ketene, respectively. Quantum chemical methods are extensively executed to review the ice-phase formation route and the kinetics of these species. Based on the obtained kinetic data, astrochemical modeling is employed to derive the abundances of these aldehydes, alcohols, ketone, and ketene in this source. It is seen that our model could successfully explain the observed abundances of various species in this hot molecular core.
  •  
5.
  • Sil, Milan, et al. (författare)
  • Chemical Complexity of Phosphorous-bearing Species in Various Regions of the Interstellar Medium
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorus-related species are not known to be as omnipresent in space as hydrogen, carbon, nitrogen, oxygen, and sulfur-bearing species. Astronomers spotted very few P-bearing molecules in the interstellar medium and circumstellar envelopes. Limited discovery of the P-bearing species imposes severe constraints in modeling the P-chemistry. In this paper, we carry out extensive chemical models to follow the fate of P-bearing species in diffuse clouds, photon-dominated or photodissociation regions (PDRs), and hot cores/corinos. We notice a curious correlation between the abundances of PO and PN and atomic nitrogen. Since N atoms are more abundant in diffuse clouds and PDRs than in the hot core/corino region, PO/PN reflects <1 in diffuse clouds, MUCH LESS-THAN1 in PDRs, and >1 in the late warm-up evolutionary stage of the hot core/corino regions. During the end of the post-warm-up stage, we obtain PO/PN > 1 for hot core and <1 for its low-mass analog. We employ a radiative transfer model to investigate the transitions of some of the P-bearing species in diffuse cloud and hot core regions and estimate the line profiles. Our study estimates the required integration time to observe these transitions with ground-based and space-based telescopes. We also carry out quantum chemical computation of the infrared features of PH3, along with various impurities. We notice that SO2 overlaps with the PH3 bending-scissoring modes around similar to 1000-1100 cm(-1). We also find that the presence of CO2 can strongly influence the intensity of the stretching modes around similar to 2400 cm(-1) of PH3.
  •  
6.
  • Taquet, V., et al. (författare)
  • Linking interstellar and cometary O2: A deep search for 16O18O in the solar-Type protostar IRAS 16293b-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21-01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s-1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s-1 relative to the source velocity, rendering the detection "tentative". We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2-5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5-15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.
  •  
7.
  • Tobin, J. J., et al. (författare)
  • Deuterium-enriched water ties planet-forming disks to comets and protostars
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615:7951, s. 227-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks1,2. However, the water snowline and the HDO:H2O ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. 3), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units)4,5. The sun-like protostar V883 Ori (M* = 1.3 M⊙)6 is undergoing an accretion burst7, increasing its luminosity to roughly 200 L⊙ (ref. 8), and previous observations suggested that its water snowline is 40-120 AU in radius6,9,10. Here we report the direct detection of gas phase water (HDO and [Formula: see text]) from the disk of V883 Ori. We measure a midplane water snowline radius of approximately 80 AU, comparable to the scale of the Kuiper Belt, and detect water out to a radius of roughly 160 AU. We then measure the HDO:H2O ratio of the disk to be (2.26 ± 0.63) × 10-3. This ratio is comparable to those of protostellar envelopes and comets, and exceeds that of Earth's oceans by 3.1σ. We conclude that disks directly inherit water from the star-forming cloud and this water becomes incorporated into large icy bodies, such as comets, without substantial chemical alteration.
  •  
8.
  • van Dishoeck, E. F., et al. (författare)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
9.
  • Yamato, Yoshihide, et al. (författare)
  • The First Interferometric Measurements of NH 2 D/NH 3 Ratio in Hot Corinos
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 941:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical evolution of nitrogen during star and planet formation is still not fully understood. Ammonia (NH3) is a key specie in the understanding of the molecular evolution in star-forming clouds and nitrogen isotope fractionation. In this paper, we present high-spatial-resolution observations of multiple emission lines of NH3 toward the protobinary system NGC1333 IRAS4A with the Karl G. Jansky Very Large Array. We spatially resolved the binary (hereafter, 4A1 and 4A2) and detected compact emission of NH3 transitions with high excitation energies (≳100 K) from the vicinity of the protostars, indicating the NH3 ice has sublimated at the inner hot region. The NH3 column density is estimated to be ∼1017-1018 cm−2. We also detected two NH2D transitions, allowing us to constrain the deuterium fractionation of ammonia. The NH2D/NH3 ratios are as high as ∼0.3-1 in both 4A1 and 4A2. From comparisons with the astrochemical models in the literature, the high NH2D/NH3 ratios suggest that the formation of NH3 ices mainly started in the prestellar phase after the formation of bulk water ice finished, and that the primary nitrogen reservoir in the star-forming cloud could be atomic nitrogen (or N atoms) rather than nitrogen-bearing species such as N2 and NH3. The implications on the physical properties of IRAS4A’s cores are discussed as well.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy