SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Futrzynski Romain) "

Sökning: WFRF:(Futrzynski Romain)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahan, Jeremy, 1987-, et al. (författare)
  • Aero-acoustic source analysis of landing gear noise via dynamic mode decomposition
  • 2014
  • Ingår i: 21st International Congress on Sound and Vibration, ICSV21. - 9786165516822 ; , s. 1245-1252
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we apply dynamic mode decomposition (DMD) on time accurate simulationsof the pressure distribution on a realistic full-scale noselanding gear configuration in order toidentify noise generating structures on landing gear surfaces. The simulated pressure data isobtained from DES simulations using the commercial software STAR-CCM+ by CD-adapco.The dynamics of the surface pressure on a tyre are discussed and the DMD modes are com-puted from instantaneous pressure snapshots. The far-fieldnoise is determined via the FfowcsWilliams-Hawkings analogy, where a given frequency band source term can be reconstructedby choosing an appropriate number of DMD modes.
  •  
2.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Analysis of the wake of a half-cylinder by dynamic mode decomposition
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This paper analyzes the dynamic structures in the wake of a half-cylinder protruding from the ground. This relatively simple and smooth geometry allows to create a signicant wake, yet the the location of the detachment point is not predictable from the geometry. The flow over the half-cylinder has a Reynolds number of 32*10^3. It is considered to be incompressible and is simulated by Large Eddy Simulations (LES). The flow field is first described in terms of the time-averages of velocity, pressure, and turbulent kinetic energy. This is the most traditional way to study turbulent flows, and it enables to identify the recirculation regions upstream and downstream of the half-cylinder. The locations of separation and reattachment are also obtained. Then, dynamic structures are extracted by means of dynamic mode decomposition (DMD). The DMD modes have the particularity to oscillate in time at a single given frequency, which renders the dynamics of the flow field more intelligible. It is found that despite a broadband spectrum, all the DMD modes reveal the same type of phenomenon that varies only in scale. By observing the modes at different frequencies, vortices can be followed from their creation in the upstream recirculation region. As they are convected downstream, they merge with bigger and bigger vortices, until they are big enough to influence the whole wake.
  •  
3.
  • Futrzynski, Romain, 1988- (författare)
  • Drag reduction using plasma actuators
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is motivated by the application of active flow control on the cabin of trucks, thereby providing a new means of drag reduction. Particularly, the work presented strives to identify how plasma actuators can be used to reduce the drag caused by the detachment of the flow around the A-pillars. This is achieved by conducting numerical simulations, and is part of a larger project that also includes experimental.The effect of plasma actuators is modeled through a body force, which adds very little computational cost and is suitable for implementation in most CFD solvers. The spatial distribution of this force is described by coefficients which have been optimized against experimental data, and the model was shown to be able to accurately reproduce the wall jet created by a single plasma actuator in a no-flow condition.A half cylinder geometry - a simplified geometry for the A-pillar of a truck - was used in a preliminary Large Eddy Simulation (LES) study that showed that the actuator alone, operated continuously, was not sufficient to achieve a significant reduction of the drag. Nevertheless, a significant drag reduction was obtained by simply increasing the strength of the body force to a higher value, showing that this type of actuation remains relevant for the reduction of drag.In the course of finding ways to improve the efficiency of the actuator, dynamic mode decomposition was investigated as a post-processing tool to extract structures in the flow. Such structures are identified by their spatial location and frequency, and might help to understand how the actuator should be used to maximize drag reduction. Thus a parallel code for dynamic mode decomposition was developed in order to facilitate the treatment of the large amounts of data obtained by LES. This code and LES itself were thereafter evaluated in the case of a pulsating channel flow. By using the dynamic mode decomposition it was possible to accurately extract oscillating profiles at the forcing frequency, although harmonics with lower amplitude compared to the turbulence intensity could not be obtained.
  •  
4.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Dymode : A parallel dynamic mode decomposition software
  • 2015
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Dymode is a parallel program that computes dynamic mode decompositions. The code is written in C++ and relies on a number of libraries. Several parameters can be specified in order to control the computational aspects of the program as well as the input and output of the decomposition, particularly how the modes are sorted. Finally, dymode is almost entirely parallel and is therefore particularly suitable for computing the dynamic mode decomposition of large datasets.The dymode package also includes dymodem, a Matlab implementation of the code which accepts the same arguments as dymode, when they are relevant, and produces the same output. It can be useful to use dymodem when dealing with smaller datasets, or to validate the output from dymode.
  •  
5.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Effect of a SDBD on the drag of a half-submerged cylinder in crossflow
  • 2014
  • Ingår i: ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2014, Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, 3 August 2014 through 7 August 2014. - : ASME Press. - 9780791846230
  • Konferensbidrag (refereegranskat)abstract
    • In this paper the effect of a SDBD-type plasma actuator on the flow over a half-submerged cylinder is investigated numerically. The actuator is modeled via a body force, which is steady in time and where an exponential decay in space is assumed. First, the parameters in the numerical actuator model are determined for the case of no flow by optimization relative to experimental data. Thereafter, numerical solutions for the case with flow are studied numerically with and without actuation. A grid study is performed to check that the flow structures are resolved in both space and time. The effect of the actuator is examined. Although no significant change is observed when using the optimized parameters, using a stronger body force yields a reduction in drag of the order of 5%.
  •  
6.
  • Futrzynski, Romain, 1988- (författare)
  • Effect of drag reducing plasma actuators using LES
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The work performed in this thesis explores new ways of reducing the drag of ground vehicles. Specifically, the effect of plasma actuators are investigated numerically with the intention to delay separation around a half-cylinder, a geometry chosen to represent a simplified A-pillar of a truck.The plasma actuators have to be included in turbulent flow simulations. Therefore, emphasis is first put on finding a numerical model that can reproduce the effect of the plasma without increasing the computational cost. This effect is modeled through a body force term added to the Navier-Stokes equations. To determine the strength and spatial extent of this body force, optimization was performed to minimize the difference between experimental and simulated profiles of plasma induced velocity. The plasma actuator model is thereafter used in Large Eddy Simulations (LES) of the flow around a half-cylinder at Reynolds number Re=65*10^3 and Re=32*10^3. Two types of actuation cases are performed. In the first case, a single actuator is used. In the second case, a pair of consecutive actuators are used, and their position on the half-cylinder is changed. It is found that a drag reduction of up to 10% is achievable. Moreover, the ideal location for actuation is determined to be near the separation point of the non-actuated flow. Finally, dynamic mode decomposition (DMD) is investigated as a tool to extract coherent dynamic structures from a turbulent flow field. The DMD is first used to analyze a channel flow where pulsations are imposed at a known frequency. It is found that DMD gives similar results to phase averaging done at the oscillation frequency. However, the presence of turbulence noise hinders the ability to identify modes at higher harmonics. The DMD is also used to post-process the half-cylinder flow case. There, it is found that the spectrum of the wake is broadband. Nevertheless, modes within distinct frequency ranges are found to be located in distinct spatial regions.
  •  
7.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Numerical simulation of a plasma actuator on a half-submerged cylinder
  • 2013
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper Large Eddy Simulations are used to study the reduction of drag that can be achieved on a half-submerged cylinder by using a type of plasma actuator: the single dielectric barrier discharge. Two body force models, one based on an exponential decrease of the force away from the plasma, the other based on a simplified electric field between the electrodes, are compared to experimental values when the actuator is positioned at the apex of the cylinder in an otherwise quiescent environment. The cylinder is then put in a crossflow, and the exponential-based model, which gives the velocity profiles the closest to the experimental data, is used to simulate the effect of the plasma actuator on such a flow. The reduction in drag is changed as the position of the actuator is varied.
  •  
8.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Numerical study of the Stokes layer in oscillating channel flow
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Oscillating turbulent channel flows present particular physics that proves to be particularly difficult to understand. In this paper, a case where the amplitude of the oscillations at the center of the channel is approximately 15% of the mean velocity and the dimensionless angular forcing frequency is 0.01 was studied using several numerical methods. DNS was performed to serve as reference to which the results from an LES were compared. The LES data was post-processed using both phase averaging and the more recent dynamic mode decomposition (DMD), which extracts coherent structures based on their frequency. It was found that the DMD is not able to extract faint harmonic components of the oscillations, which have been observed with phase averaging and Fourier transforms. It is, however, able to extract accurate profiles of the mean and forcing frequency quantities. Compared to the DNS, the accuracy of the LES results was similar to analytical models, although no single model gives accurate result for every quantity investigated.  
  •  
9.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Reduction of the wake of a half-cylinder using a pair of plasma actuators
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper, the effect of plasma actuators on separated flows is studied via Large Eddy Simulations (LES) of the incompressible flow over a half-cylinder at a Reynolds number of 32*10^3. One plasma actuator is modeled by a steady body force distribution which is able to replicate the effect of the actuator in a quiescent environment without adding any significant complexity to the numerical simulations. This model is applied at two locations in order to simulate a pair of plasma actuators placed on the surface of the halfcylinder, separated by 20 degrees. Several simulations have been performed with the pair of actuators placed at different angles on the half-cylinder, and the drag reduction is reported for each configuration. It is determined that the actuation is able to achieve up to 10% of drag reduction when one actuator from the pair is placed a few degrees downstream of the separation point of the non-actuated flow. Mean flow quantities obtained in the wake and on the surface of the half-cylinder reveal that the reduction in drag is coupled to a reduction in the size of the recirculating zone as well as a delay of the separation point of up to 10 degrees.
  •  
10.
  • Futrzynski, Romain, 1988-, et al. (författare)
  • Study of Plasma Actuator Efficiency by Simulation of the Detached Flow Over a Half-Cylinder
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In this paper, the effect of a numerical model for plasma actuators, in the form of single dielectric barrier discharge, is evaluated. One such plasma actuator is modeled by a steady body force distribution able to replicate the effect of the actuator in a quiescent environment without adding any significant complexity to the numerical simulations. This model is used in Large Eddy Simulations (LES) of the flow over a half-cylinder at a Reynolds number of 32000 , where the actuation is expected to yield a measurable drag reduction. The flow without actuation is first analyzed by mesh refinement and by evaluation of different flow quantities in order the validate the simulation results. Thereafter, the model is used to simulate two actuators placed on the half-cylinder one after another and at four locations chosen so that the mean separation point of the non-actuated flow lies betweenthe two actuators. It is determined that the actuation is able to achieve up to 10% of drag reduction, although this value decreases to 6% when the actuation location is moved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy