SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fyfe Ralph) "

Sökning: WFRF:(Fyfe Ralph)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broström, Anna, et al. (författare)
  • Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation : a review
  • 2008
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 17:5, s. 461-478
  • Tidskriftsartikel (refereegranskat)abstract
    • Information on the spatial distribution of past vegetation on local, regional and global scales is increasingly used within climate modelling, nature conservancy and archaeology. It is possible to obtain such information from fossil pollen records in lakes and bogs using the landscape reconstruction algorithm (LRA) and its two models, REVEALS and LOVE. These models assume that reliable pollen productivity estimates (PPEs) are available for the plant taxa involved in the quantitative reconstructions of past vegetation, and that PPEs are constant through time. This paper presents and discusses the PPEs for 15 tree and 18 herb taxa obtained in nine study areas of Europe. Observed differences in PPEs between regions may be explained by methodological issues and environmental variables, of which climate and related factors such as reproduction strategies and growth forms appear to be the most important. An evaluation of the PPEs at hand so far suggests that they can be used in modelling applications and quantitative reconstructions of past vegetation, provided that consideration of past environmental variability within the region is used to inform selection of PPEs, and bearing in mind that PPEs might have changed through time as a response to climate change. Application of a range of possible PPEs will allow a better evaluation of the results.
  •  
2.
  • Fyfe, Ralph M., et al. (författare)
  • The Holocene vegetation cover of Britain and Ireland : overcoming problems of scale and discerning patterns of openness
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 73, s. 132-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The vegetation of Europe has undergone substantial changes during the course of the Holocene epoch, resulting from range expansion of plants following climate amelioration, competition between taxa and disturbance through anthropogenic activities. Much of the detail of this pattern is understood from decades of pollen analytical work across Europe, and this understanding has been used to address questions relating to vegetation-climate feedback, biogeography and human impact. Recent advances in modelling the relationship between pollen and vegetation now make it possible to transform pollen proportions into estimates of vegetation cover at both regional and local spatial scales, using the Landscape Reconstruction Algorithm (LRA), i.e. the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) and the LOVE (Local VEgetation) models. This paper presents the compilation and analysis of 73 pollen stratigraphies from the British Isles, to assess the application of the LRA and describe the pattern of landscape/woodland openness (i.e. the cover of low herb and bushy vegetation) through the Holocene. The results show that multiple small sites can be used as an effective replacement for a single large site for the reconstruction of regional vegetation cover. The REVEALS vegetation estimates imply that the British Isles had a greater degree of landscape/woodland openness at the regional scale than areas on the European mainland. There is considerable spatial bias in the British Isles dataset towards wetland areas and uplands, which may explain higher estimates of landscape openness compared with Europe. Where multiple estimates of regional vegetation are available from within the same region inter-regional differences are greater than intra-regional differences, supporting the use of the REVEALS model to the estimation of regional vegetation from pollen data. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
3.
  • Gaillard, Marie-José, et al. (författare)
  • From land cover-climate relationships at the subcontinental scale to land cover-environment relationships at the regional and local spatial scale – the contribution of pollen-based quantitative reconstructions of vegetation cover using the Landscape Reconstruction Algorithm approach
  • 2014
  • Ingår i: Towards a more accurate quantification of human-environment interactions in the past. ; , s. 25-26
  • Konferensbidrag (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (Sugita 2007a,b) includes two models, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) that estimates vegetation abundance (% cover) within an area of ca. 100 km x 100 km, and LOVE (LOcal Vegetation Estimates) that estimates vegetation abundance at the local spatial scale, i.e. within the Relevant Source Area of Pollen (RSAP sensu Sugita, 2004) that is the smallest area around the study site for which the reconstruction is valid. The RSAP is estimated by the LOVE model and varies between sites and vegetation settings; so far, it was estimated to vary between < 1 - < 10 km in most ecological settings of the Holocene in NW Europe. We used the REVEALS model and over 600 pollen records from pollen data bases and individual researchers to reconstruct land-cover in NW Europe N of the Alps for key time windows of the Holocene in order to assess model-based reconstructions of anthropogenic land-cover change (ALCC) (e.g. Kaplan et al., 2009) and model (LPJ-GUESS) simulations of past potential (climate-induced vegetation), and to study past land cover – climate interactions using a regional climate model (RCA3). We used the REVEALS model and the complete LRA approach (REVEALS + LOVE models) along with two pollen records from large lakes and three pollen records from small bogs to reconstruct the local-scale land-cover in central Småland, southern Sweden, to study the relationship between vegetation composition, fire, climate and human impact at the regional and local spatial scales with the objective to discuss biodiversity issues. Our results suggest that i) past subcontinental to regional ALCC did influence regional climate through biogeophysical processes at the landatmosphere interface (Strandberg et al., submitted), and ii) local land-cover change, both natural and anthropogenic, govern environmental changes such as fire and biodiversity (Cui et al., 2013; Cui et al., submitted).
  •  
4.
  •  
5.
  • Giesecke, Thomas, et al. (författare)
  • Towards mapping the late Quaternary vegetation change of Europe.
  • 2014
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 23:1, s. 75-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.
  •  
6.
  • Githumbi, Esther, et al. (författare)
  • European pollen-based REVEALS land-cover reconstructions for the Holocene : Methodology, mapping and potentials
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:4, s. 1581-1619
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11g€¯700g€¯calg€¯yrg€¯BP). We describe how vegetation cover has been quantified from pollen records at a 11 spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites"(REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75° N, 25° W-50° E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
  •  
7.
  • Githumbi, Esther, et al. (författare)
  • Holocene quantitative pollen-based vegetation reconstructions in Europe for climate modelling: LandClim II
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Understanding land use and land cover (LULC) change through time is an important aspect when attempting to interpret human-environment interactions through time. Palaeoenvironmental techniques have been crucial in bridging this gap by providing information that has been used to estimate climate change, vegetation change, sea level change etc. through time using a variety of proxies. Producing quantitative land-cover reconstructions has been an aim and a challenge with several methods attempted during the decades. In this project, we use the REVEALS model has been tested and validated in several regions of the world.We use REVEALS-based quantitative reconstructions of vegetation change to investigate the biogeochemical and biogeophysical forcings of land-cover change on climate. In the first phase of this project, LandClim I, quantitative vegetation reconstructions were produced for Europe (Mediterranean area excluded) focusing on five time windows of the Holocene between 6ka BP and present. The results from a regional climate model showed that the impact of the reconstructed LULC between 6 ka and 0.2 ka BP via biogeophysical forcing varied geographically and seasonally. We present the REVEALS quantitative pollen-based vegetation reconstruction from the ongoing second phase of the project LandClim II “Quantification of the biogeophysical and biogeochemical forcings from anthropogenic deforestation on regional Holocene climate in Europe”. This reconstruction covers entire Europe and is transient over the Holocene with a time resolution of 500 years between 11.2 and 0.7ka BP, and 100 to 300 years from 0.7ka BP to modern time.
  •  
8.
  • Githumbi, Esther, et al. (författare)
  • Pollen-Based Maps of Past Regional Vegetation Cover in Europe Over 12 Millennia-Evaluation and Potential
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic and accurate reconstructions of past vegetation cover are necessary to study past environmental changes. This is important since the effects of human land-use changes (e.g. agriculture, deforestation and afforestation/reforestation) on biodiversity and climate are still under debate. Over the last decade, development, validation, and application of pollen-vegetation relationship models have made it possible to estimate plant abundance from fossil pollen data at both local and regional scales. In particular, the REVEALS model has been applied to produce datasets of past regional plant cover at 1 degrees spatial resolution at large subcontinental scales (North America, Europe, and China). However, such reconstructions are spatially discontinuous due to the discrete and irregular geographical distribution of sites (lakes and peat bogs) from which fossil pollen records have been produced. Therefore, spatial statistical models have been developed to create continuous maps of past plant cover using the REVEALS-based land cover estimates. In this paper, we present the first continuous time series of spatially complete maps of past plant cover across Europe during the Holocene (25 time windows covering the period from 11.7 k BP to present). We use a spatial-statistical model for compositional data to interpolate REVEALS-based estimates of three major land-cover types (LCTs), i.e., evergreen trees, summer-green trees and open land (grasses, herbs and low shrubs); producing spatially complete maps of the past coverage of these three LCTs. The spatial model uses four auxiliary data sets-latitude, longitude, elevation, and independent scenarios of past anthropogenic land-cover change based on per-capita land-use estimates ("standard" KK10 scenarios)-to improve model performance for areas with complex topography or few observations. We evaluate the resulting reconstructions for selected time windows using present day maps from the European Forest Institute, cross validate, and compare the results with earlier pollen-based spatially-continuous estimates for five selected time windows, i.e., 100 BP-present, 350-100 BP, 700-350 BP, 3.2-2.7 k BP, and 6.2-5.7 k BP. The evaluations suggest that the statistical model provides robust spatial reconstructions. From the maps we observe the broad change in the land-cover of Europe from dominance of naturally open land and persisting remnants of continental ice in the Early Holocene to a high fraction of forest cover in the Mid Holocene, and anthropogenic deforestation in the Late Holocene. The temporal and spatial continuity is relevant for land-use, land-cover, and climate research.
  •  
9.
  • Kaplan, Jed O., et al. (författare)
  • Constraining the Deforestation History of Europe : Evaluation of Historical Land Use Scenarios with Pollen-Based Land Cover Reconstructions
  • 2017
  • Ingår i: Land. - : MDPI. - 2073-445X. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic land cover change (ALCC) is the most important transformation of the Earth system that occurred in the preindustrial Holocene, with implications for carbon, water and sediment cycles, biodiversity and the provision of ecosystem services and regional and global climate. For example, anthropogenic deforestation in preindustrial Eurasia may have led to feedbacks to the climate system: both biogeophysical, regionally amplifying winter cold and summer warm temperatures, and biogeochemical, stabilizing atmospheric CO2 concentrations and thus influencing global climate. Quantification of these effects is difficult, however, because scenarios of anthropogenic land cover change over the Holocene vary widely, with increasing disagreement back in time. Because land cover change had such widespread ramifications for the Earth system, it is essential to assess current ALCC scenarios in light of observations and provide guidance on which models are most realistic. Here, we perform a systematic evaluation of two widely-used ALCC scenarios (KK10 and HYDE3.1) in northern and part of central Europe using an independent, pollen-based reconstruction of Holocene land cover (REVEALS). Considering that ALCC in Europe primarily resulted in deforestation, we comparemodeled land use with the cover of non-forest vegetation inferred from the pollen data. Though neither land cover change scenario matches the pollen-based reconstructions precisely, KK10 correlates well with REVEALS at the country scale, while HYDE systematically underestimates land use with increasing magnitude with time in the past. Discrepancies between modeled and reconstructed land use are caused by a number of factors, including assumptions of per-capita land use and socio-cultural factors that cannot be predicted on the basis of the characteristics of the physical environment, including dietary preferences, long-distance trade, the location of urban areas and social organization.
  •  
10.
  • Li, Furong, et al. (författare)
  • Evaluation of relative pollen productivities in temperate China for reliable pollen-based quantitative reconstructions of Holocene plant cover
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (LRA) is regarded as the soundest approach for quantifying taxon-specific plant cover from pollen data. The reliability of relative pollen productivity (RPP) estimates is fundamental in the accuracy of quantitative vegetation reconstruction using the LRA approach. Inconsistent RPP estimates produced by different studies can cast doubt on the reliability and applicability of quantitative vegetation reconstruction. Therefore, it is crucial that the RPP estimates are evaluated before being applied for quantitative vegetation reconstruction. We have tested two alternative approaches, namely, a leave-one-out cross-validation (LOO) method and a splitting-by-subregion strategy, using surface pollen assemblages and the REVEALS model-the first step in the LRA-to evaluate the reliability of RPPs estimates of 10 target taxa obtained in the cultural landscape of Shandong. We compared the REVEALS estimates (RVs) with observations of regional vegetation abundance (OBVs) and pollen proportions (PPs). The RVs of all taxa are generally closer to OBVs than PPs, and the degree of similarity depends strongly on the abundance of individual taxa in plant and pollen; taxa dominant in the region show the highest similarity between RVs and OBVs, such as Artemisia, Poaceae, and Humulus. The RVs of all herb taxa except Humulus and Asteraceae SF Cichorioideae are slightly overrepresented, and the RVs of all tree taxa are underrepresented except for Castanea. The comparison of RVs with OBVs collected from different spatial extents shows that the RVs of all herb taxa are more similar to OBVs collected from shorter distances (100 km and 75 km for the entire region and the subregion, respectively), whereas the RVs of all tree taxa are more similar to OBVs collected from longer distances (150 km and 100 km for the entire region and the subregion, respectively). Furthermore, our findings highlight the importance to test different sizes of area for vegetation surveys for evaluation of the RVs given that the appropriate size of vegetation survey may vary between low pollen producers (mainly herbs) and high pollen producers (mainly trees). We consider that the LOO strategy is the best approach in this case study for evaluating the RPP estimates from surface moss polsters. The evaluation confirms the reliability of the obtained RPP estimates for their potential application in quantitative reconstruction of vegetation abundance in temperate China.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (6)
Typ av innehåll
refereegranskat (23)
Författare/redaktör
Mazier, Florence (14)
Nielsen, Anne Birgit ... (12)
Gaillard, Marie-José ... (12)
Poska, Anneli (11)
Marquer, Laurent (7)
Gaillard, Marie-Jose (6)
visa fler...
Lindström, Johan (6)
Giesecke, Thomas (5)
Smith, Benjamin (4)
Zhang, Qiong (4)
Bjune, Anne E. (4)
Herzschuh, Ulrike (3)
Alenius, Teija (2)
Broström, Anna (2)
Kjellström, Erik (2)
Finné, Martin (2)
Seppa, Heikki (2)
Bozilova, Elissaveta (1)
Panajiotidis, Sampso ... (1)
Filipova-Marinova, M ... (1)
Tonkov, Spassimir (1)
Pidek, Irena Agniesz ... (1)
Noryskiewicz, Bozena (1)
Koff, Tiiu (1)
van Leeuwen, Jacquel ... (1)
Rundgren, Mats (1)
Martinez, Alexandre (1)
Chen, Jie (1)
Jönsson, Anna Maria (1)
Möller, Per (1)
Blaauw, Maarten (1)
Buckland, Philip I., ... (1)
Lemdahl, Geoffrey (1)
Finsinger, Walter (1)
Lotter, André F. (1)
Persson, Thomas (1)
Lechterbeck, Jutta (1)
Schmidt, Peter (1)
Olofsson, Jörgen (1)
Arthur, Frank (1)
Hatlestad, Kailin (1)
Roche, Didier M (1)
Renssen, Hans (1)
Lagerås, Per (1)
Labuhn, Inga (1)
McLoughlin, Stephen (1)
Magri, Donatella (1)
Çakırlar, Canan (1)
Normand, Signe (1)
Schläfli, Patrick (1)
visa färre...
Lärosäte
Linnéuniversitetet (17)
Lunds universitet (13)
Uppsala universitet (3)
Stockholms universitet (3)
Sveriges Lantbruksuniversitet (3)
Umeå universitet (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Humaniora (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy