SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Günther Maximilian N.) "

Sökning: WFRF:(Günther Maximilian N.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
2.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
3.
  • Swayne, M.I., et al. (författare)
  • The EBLM Project– XI. Mass, radius, and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 5703-5722
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of low-mass stars have frequently shown a disagreement between observed stellar radii and radii predicted by theoretical stellar structure models. This ‘radius inflation’ problem could have an impact on both stellar and exoplanetary science. We present the final results of our observation programme with the CHaracterising ExOPlanet Satellite (CHEOPS) to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions (EBLMs). Combined with the spectroscopic orbits of the solar-type companions, we can derive the masses, radii, and effective temperatures of 23 M-dwarf stars. We use the PYCHEOPS data analysis software to analyse their primary and secondary occultations. For all but one target, we also perform analyses with Transiting Exoplanet Survey Satellite (TESS) light curves for comparison. We have assessed the impact of starspot-induced variation on our derived parameters and account for this in our radius and effective temperature uncertainties using simulated light curves. We observe trends in inflation with both metallicity and orbital separation. We also observe a strong trend in the difference between theoretical and observational effective temperatures with metallicity. There is no such trend with orbital separation. These results are not consistent with the idea that the observed inflation in stellar radius combines with lower effective temperature to preserve the luminosity predicted by low-mass stellar models. Our EBLM systems provide high-quality and homogeneous measurements that can be used in further studies of radius inflation.
  •  
4.
  • Meier Valdes, E., et al. (författare)
  • Investigating the visible phase-curve variability of 55 Cnc e
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 55 Cnc e is an ultra-short period super-Earth transiting a Sun-like star. Previous observations in the optical range detected a time-variable flux modulation that is phased with the planetary orbital period, whose amplitude is too large to be explained by reflected light and thermal emission alone. Aims. The goal of the study is to investigate the origin of the variability and timescale of the phase-curve modulation in 55 Cnc e. To this end, we used the CHaracterising ExOPlanet Satellite (CHEOPS), whose exquisite photometric precision provides an opportunity to characterise minute changes in the phase curve from one orbit to the next. Methods. CHEOPS observed 29 individual visits of 55 Cnc e between March 2020 and February 2022. Based on these observations, we investigated the different processes that could be at the origin of the observed modulation. In particular, we built a toy model to assess whether a circumstellar torus of dust driven by radiation pressure and gravity might match the observed flux variability timescale. Results. We find that the phase-curve amplitude and peak offset of 55 Cnc e do vary between visits. The sublimation timescales of selected dust species reveal that silicates expected in an Earth-like mantle would not survive long enough to explain the observed phase-curve modulation. We find that silicon carbide, quartz, and graphite are plausible candidates for the circumstellar torus composition because their sublimation timescales are long. Conclusions. The extensive CHEOPS observations confirm that the phase-curve amplitude and offset vary in time. We find that dust could provide the grey opacity source required to match the observations. However, the data at hand do not provide evidence that circumstellar material with a variable grain mass per unit area causes the observed variability. Future observations with the James Webb Space Telescope (JWST) promise exciting insights into this iconic super-Earth.
  •  
5.
  • Akinsanmi, B., et al. (författare)
  • The tidal deformation and atmosphere of WASP-12 b from its phase curve
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-hot Jupiters present a unique opportunity to understand the physics and chemistry of planets, their atmospheres, and interiors at extreme conditions. WASP-12 b stands out as an archetype of this class of exoplanets, with a close-in orbit around its star that results in intense stellar irradiation and tidal effects. Aims. The goals are to measure the planet's tidal deformation, atmospheric properties, and also to refine its orbital decay rate. Methods. We performed comprehensive analyses of the transits, occultations, and phase curves of WASP-12b by combining new CHEOPS observations with previous TESS and Spitzer data. The planet was modeled as a triaxial ellipsoid parameterized by the second-order fluid Love number of the planet, h2, which quantifies its radial deformation and provides insight into the interior structure. Results. We measured the tidal deformation of WASP-12b and estimated a Love number of h2 = 1.55- 0.49+0.45 (at 3.2σ) from its phase curve. We measured occultation depths of 333 ± 24 ppm and 493 ± 29 ppm in the CHEOPS and TESS bands, respectively, while the nightside fluxes are consistent with zero, and also marginal eastward phase offsets. Our modeling of the dayside emission spectrum indicates that CHEOPS and TESS probe similar pressure levels in the atmosphere at a temperature of ~2900 K. We also estimated low geometric albedos of Ag = 0.086 ± 0.017 and Ag = 0.01 ± 0.023 in the CHEOPS and TESS passbands, respectively, suggesting the absence of reflective clouds in the high-temperature dayside of the planet. The CHEOPS occultations do not show strong evidence for variability in the dayside atmosphere of the planet at the median occultation depth precision of 120 ppm attained. Finally, combining the new CHEOPS timings with previous measurements refines the precision of the orbital decay rate by 12% to a value of - 30.23 ± 0.82 ms yr- 1, resulting in a modified stellar tidal quality factor of Q′∗ = 1.70 ± 0.14 × 105. Conclusions. WASP-12 b becomes the second exoplanet, after WASP-103b, for which the Love number has been measured from the effect of tidal deformation in the light curve. However, constraining the core mass fraction of the planet requires measuring h2 with a higher precision. This can be achieved with high signal-to-noise observations with JWST since the phase curve amplitude, and consequently the induced tidal deformation effect, is higher in the infrared.
  •  
6.
  • Alonso, R., et al. (författare)
  • No random transits in CHEOPS observations of HD 139139 *,**
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • Context . The star HD 139139 (a.k.a. ‘the Random Transiter’) is a star that exhibited enigmatic transit-like features with no apparent periodicity in K2 data. The shallow depth of the events (-200 ppm - equivalent to transiting objects with radii of -1.5 R⊕ in front of a Sun-like star) and their non-periodicity constitute a challenge for the photometric follow-up of this star. Aims . The goal of this study is to confirm with independent measurements the presence of shallow, non-periodic transit-like features on this object. Methods . We performed observations with CHEOPS for a total accumulated time of 12.75 days, distributed in visits of roughly 20 h in two observing campaigns in years 2021 and 2022. The precision of the data is sufficient to detect 150 ppm features with durations longer than 1.5 h. We used the duration and times of the events seen in the K2 curve to estimate how many events should have been detected in our campaigns, under the assumption that their behaviour during the CHEOPS observations would be the same as in the K2 data of 2017. Results . We do not detect events with depths larger than 150 ppm in our data set. If the frequency, depth, and duration of the events were the same as in the K2 campaign, we estimate the probability of having missed all events due to our limited observing window would be 4.8%. Conclusions . We suggest three different scenarios to explain our results: 1) Our observing window was not long enough, and the events were missed with the estimated 4.8% probability. 2) The events recorded in the K2 observations were time critical, and the mechanism producing them was either not active in the 2021 and 2022 campaigns or created shallower events under our detectability level. 3) The enigmatic events in the K2 data are the result of an unidentified and infrequent instrumental noise in the original data set or its data treatment.
  •  
7.
  • Bonfanti, A., et al. (författare)
  • Characterising TOI-732 b and c: New insights into the M-dwarf radius and density valley ★,★★
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • TOI-732 is an M dwarf hosting two transiting planets that are located on the two opposite sides of the radius valley. Inferring a reliable demographics for this type of systems is key to understanding their formation and evolution mechanisms. Aims. By doubling the number of available space-based observations and increasing the number of radial velocity (RV) measurements, we aim at refining the parameters of TOI-732 b and c. We also use the results to study the slope of the radius valley and the density valley for a well-characterised sample of M-dwarf exoplanets. Methods. We performed a global Markov chain Monte Carlo analysis by jointly modelling ground-based light curves and CHEOPS and TESS observations, along with RV time series both taken from the literature and obtained with the MAROON-X spectrograph. The slopes of the M-dwarf valleys were quantified via a support vector machine (SVM) procedure. Results. TOI-732 b is an ultrashort-period planet (P = 0.76837931−+000000004200000039 days) with a radius Rb = 1.325+−00057058 R☉, a mass Mb = 2.46 ± 0.19 M☉, and thus a mean density ρb = 5.8+−1008 g cm−3, while the outer planet at P = 12.252284 ± 0.000013 days has Rc = 2.39+−001011 R☉, Mc = 8.04+−005048 M☉, and thus ρc = 3.24+−005543 g cm−3. Even with respect to the most recently reported values, this work yields uncertainties on the transit depths and on the RV semi-amplitudes that are smaller up to a factor of ∼1.6 and ∼2.4 for TOI-732 b and c, respectively. Our calculations for the interior structure and the location of the planets in the mass-radius diagram lead us to classify TOI-732 b as a super-Earth and TOI-732 c as a mini-Neptune. Following the SVM approach, we quantified d log Rp,valley/d log P = −0.065+−00024013, which is flatter than for Sun-like stars. In line with former analyses, we note that the radius valley for M-dwarf planets is more densely populated, and we further quantify the slope of the density valley as d log ρ̂valley/d log P = −0.02+−001204. Conclusions. Compared to FGK stars, the weaker dependence of the position of the radius valley on the orbital period might indicate that the formation shapes the radius valley around M dwarfs more strongly than the evolution mechanisms.
  •  
8.
  • Bruno, G., et al. (författare)
  • Detailed cool star flare morphology with CHEOPS and TESS
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. White-light stellar flares are proxies for some of the most energetic types of flares, but their triggering mechanism is still poorly understood. As they are associated with strong X and ultraviolet emission, their study is particularly relevant to estimate the amount of high-energy irradiation onto the atmospheres of exoplanets, especially those in their stars’ habitable zone. Aims. We used the high-cadence, high-photometric capabilities of the CHEOPS and TESS space telescopes to study the detailed morphology of white-light flares occurring in a sample of 130 late-K and M stars, and compared our findings with results obtained at a lower cadence. Methods. We employed dedicated software for the reduction of 3 s cadence CHEOPS data, and adopted the 20 s cadence TESS data reduced by their official processing pipeline. We developed an algorithm to separate multi-peak flare profiles into their components, in order to contrast them to those of single-peak, classical flares. We also exploited this tool to estimate amplitudes and periodicities in a small sample of quasi-periodic pulsation (QPP) candidates. Results. Complex flares represent a significant percentage (≳30%) of the detected outburst events. Our findings suggest that high-impulse flares are more frequent than suspected from lower-cadence data, so that the most impactful flux levels that hit close-in exoplanets might be more time-limited than expected. We found significant differences in the duration distributions of single and complex flare components, but not in their peak luminosity. A statistical analysis of the flare parameter distributions provides marginal support for their description with a log-normal instead of a power-law function, leaving the door open to several flare formation scenarios. We tentatively confirmed previous results about QPPs in high-cadence photometry, report the possible detection of a pre-flare dip, and did not find hints of photometric variability due to an undetected flare background. Conclusions. The high-cadence study of stellar hosts might be crucial to evaluate the impact of their flares on close-in exoplanets, as their impulsive phase emission might otherwise be incorrectly estimated. Future telescopes such as PLATO and Ariel, thanks to their high-cadence capability, will help in this respect. As the details of flare profiles and of the shape of their parameter distributions are made more accessible by continuing to increase the instrument precision and time resolution, the models used to interpret them and their role in star-planet interactions might need to be updated constantly.
  •  
9.
  • Demangeon, O., et al. (författare)
  • Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b***
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. WASP-76 b has been a recurrent subject of study since the detection of a signature in high-resolution transit spectroscopy data indicating an asymmetry between the two limbs of the planet. The existence of this asymmetric signature has been confirmed by multiple studies, but its physical origin is still under debate. In addition, it contrasts with the absence of asymmetry reported in the infrared (IR) phase curve. Aims. We provide a more comprehensive dataset of WASP-76 b with the goal of drawing a complete view of the physical processes at work in this atmosphere. In particular, we attempt to reconcile visible high-resolution transit spectroscopy data and IR broadband phase curves. Methods. We gathered 3 phase curves, 20 occultations, and 6 transits for WASP-76 b in the visible with the CHEOPS space telescope. We also report the analysis of three unpublished sectors observed by the TESS space telescope (also in the visible), which represents 34 phase curves. Results. WASP-76 b displays an occultation of 260 ± 11 and 152 ± 10 ppm in TESS and CHEOPS bandpasses respectively. Depending on the composition assumed for the atmosphere and the data reduction used for the IR data, we derived geometric albedo estimates that range from 0.05 ± 0.023 to 0.146 ± 0.013 and from <0.13 to 0.189 ± 0.017 in the CHEOPS and TESS bandpasses, respectively. As expected from the IR phase curves, a low-order model of the phase curves does not yield any detectable asymmetry in the visible either. However, an empirical model allowing for sharper phase curve variations offers a hint of a flux excess before the occultation, with an amplitude of ∼40 ppm, an orbital offset of ∼−30◦, and a width of ∼20◦. We also constrained the orbital eccentricity of WASP-76 b to a value lower than 0.0067, with a 99.7% confidence level. This result contradicts earlier proposed scenarios aimed at explaining the asymmetry observed in high-resolution transit spectroscopy. Conclusions. In light of these findings, we hypothesise that WASP-76 b could have night-side clouds that extend predominantly towards its eastern limb. At this limb, the clouds would be associated with spherical droplets or spherically shaped aerosols of an unknown species, which would be responsible for a glory effect in the visible phase curves.
  •  
10.
  • Garai, Z., et al. (författare)
  • Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multi-planet systems are important sources of information regarding the evolution of planets. However, the long-period planets in these systems often escape detection. These objects in particular may retain more of their primordial characteristics compared to close-in counterparts because of their increased distance from the host star. HD 22946 is a bright (G = 8.13 mag) late F-type star around which three transiting planets were identified via Transiting Exoplanet Survey Satellite (TESS) photometry, but the true orbital period of the outermost planet d was unknown until now. Aims. We aim to use the Characterising Exoplanet Satellite (CHEOPS) space telescope to uncover the true orbital period of HD 22946d and to refine the orbital and planetary properties of the system, especially the radii of the planets. Methods. We used the available TESS photometry of HD 22946 and observed several transits of the planets b, c, and d using CHEOPS. We identified two transits of planet d in the TESS photometry, calculated the most probable period aliases based on these data, and then scheduled CHEOPS observations. The photometric data were supplemented with ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) radial velocity data. Finally, a combined model was fitted to the entire dataset in order to obtain final planetary and system parameters. Results. Based on the combined TESS and CHEOPS observations, we successfully determined the true orbital period of the planet d to be 47.42489 ± 0.00011 days, and derived precise radii of the planets in the system, namely 1.362 ± 0.040 R, 2.328 ± 0.039 R, and 2.607 ± 0.060 R for planets b, c, and d, respectively. Due to the low number of radial velocities, we were only able to determine 3σ upper limits for these respective planet masses, which are 13.71 M, 9.72 M, and 26.57 M. We estimated that another 48 ESPRESSO radial velocities are needed to measure the predicted masses of all planets in HD 22946. We also derived stellar parameters for the host star. Conclusions. Planet c around HD 22946 appears to be a promising target for future atmospheric characterisation via transmission spectroscopy. We can also conclude that planet d, as a warm sub-Neptune, is very interesting because there are only a few similar confirmed exoplanets to date. Such objects are worth investigating in the near future, for example in terms of their composition and internal structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy