SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Güsten R.) "

Sökning: WFRF:(Güsten R.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Wagner, J., et al. (författare)
  • First 230? : GHz VLBI fringes on 3C 279 using the APEX Telescope (Research Note)
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 581
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report about a 230? GHz very long baseline interferometry (VLBI) fringe finder observation of blazar 3C 279 with the APEX telescope in Chile, the phased submillimeter array (SMA), and the SMT of the Arizona Radio Observatory (ARO). Methods. We installed VLBI equipment and measured the APEX station position to 1? cm accuracy (1σ). We then observed 3C 279 on 2012 May 7 in a 5? h 230? GHz VLBI track with baseline lengths of 2800? Mλ to 7200? Mλ and a finest fringe spacing of 28.6? μas. Results. Fringes were detected on all baselines with signal-to-noise ratios of 12 to 55 in 420? s. The correlated flux density on the longest baseline was ∼0.3? Jy beam-1, out of a total flux density of 19.8? Jy. Visibility data suggest an emission region ≤ 38? μas in size, and at least two components, possibly polarized. We find a lower limit of the brightness temperature of the inner jet region of about 1010? K. Lastly, we find an upper limit of 20% on the linear polarization fraction at a fringe spacing of ∼ 38? μas. Conclusions. With APEX the angular resolution of 230? GHz VLBI improves to 28.6? μas. This allows one to resolve the last-photon ring around the Galactic Center black hole event horizon, expected to be 40? μas in diameter, and probe radio jet launching at unprecedented resolution, down to a few gravitational radii in galaxies like M 87. To probe the structure in the inner parsecs of 3C 279 in detail, follow-up observations with APEX and five other mm-VLBI stations have been conducted (March 2013) and are being analyzed.
  •  
3.
  • Gupta, H., et al. (författare)
  • Detection of OH+ and H2O+ towards Orion KL
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L47-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
  •  
4.
  •  
5.
  • Gerin, M., et al. (författare)
  • Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L16-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of the ground state N, J = 1, 3/2 -> 1, 1/2 doublet of the methylidyne radical CH at similar to 532 GHz and similar to 536 GHz with the Herschel/ HIFI instrument along the sight-line to the massive star-forming regions G10.6-0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H2] similar to 3.2 +/- 1.1 x 10-8. The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H2) ranging between 100 and 1000 cm-3).
  •  
6.
  • Mookerjea, B., et al. (författare)
  • Excitation and abundance of C3 in star forming cores Herschel/HIFI observations of the sight-lines to W31C and W49N
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L13 -
  • Tidskriftsartikel (refereegranskat)abstract
    • We present spectrally resolved observations of triatomic carbon (C-3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu(2) bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C-3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C-3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (T-rot) of similar to 50-70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived T-rot, we get column densities N(C-3) similar to 7-9 x 10(14) cm(-2) and abundance x(C-3) similar to 10(-8) with respect to H-2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C-3) = 10(-8), T-kin = 30-50 K, N(C-3) = 1.5 x 10(15) cm(-2) fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.
  •  
7.
  • Rolffs, R., et al. (författare)
  • Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L46 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions. Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN. Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to (HCN)-C-13). This is most evident in the HCN 12-11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part. Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important.
  •  
8.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI discovery of interstellar chloronium (H2Cl+)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2_12-1_01 lines of ortho-H\_2^35Cl^+ and ortho-H\_2^37Cl^+ are detected in absorption towards NGC 6334I, and the 1_11-0_00 transition of para-H\_2^35Cl^+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H_2Cl^+ column density ratios, ~1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^13 cm^-2, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
  •  
9.
  • Sonnentrucker, P., et al. (författare)
  • Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L12-
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH) - N(H-2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H-2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H-2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of similar to 24 km s(-1), that had not been identified in molecular absorption line studies prior to the launch of Herschel.
  •  
10.
  • Hartogh, P., et al. (författare)
  • HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L150
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution far-infrared and sub-millimetre spectroscopy of water lines is an important tool to understand the physical and chemical properties of cometary atmospheres. We present observations of several rotational ortho- and para-water transitions in comet C/2008 Q3 (Garradd) performed with HIFI on Herschel. These observations have provided the first detection of the 2(12)-1(01) (1669 GHz) ortho and 1(11)-0(00) (1113 GHz) para transitions of water in a cometary spectrum. In addition, the ground-state transition 1(10)-1(01) at 557 GHz is detected and mapped. By detecting several water lines quasi-simultaneously and mapping their emission we can constrain the excitation parameters in the coma. Synthetic line profiles are computed using excitation models which include excitation by collisions, solar infrared radiation, and radiation trapping. We obtain the gas kinetic temperature, constrain the electron density profile, and estimate the coma expansion velocity by analyzing the map and line shapes. We derive water production rates of 1.7-2.8 x 10(28) s(-1) over the range r(h) = 1.83-1.85 AU.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy