SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galafassi Silvia) "

Sökning: WFRF:(Galafassi Silvia)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galafassi, Silvia, et al. (författare)
  • Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions
  • 2011
  • Ingår i: Journal of Industrial Microbiology & Biotechnology. - : Oxford University Press (OUP). - 1367-5435 .- 1476-5535. ; 38:8, s. 1079-1088
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
  •  
2.
  • Galafassi, Silvia, et al. (författare)
  • Osmotic stress response in the wine yeast Dekkera bruxellensis
  • 2013
  • Ingår i: Food Microbiology. - : Elsevier BV. - 1095-9998 .- 0740-0020. ; 36:2, s. 316-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Dekkera bruxellensis is mainly associated with Iambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPO) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
3.
  • Merico, Annamaria, et al. (författare)
  • The oxygen level determines the fermentation pattern in Kluyveromyces lactis
  • 2009
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1364 .- 1567-1356. ; 9:5, s. 749-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis, under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.
  •  
4.
  • Moktaduzzaman, Md, et al. (författare)
  • Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499.
  • 2015
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1364 .- 1567-1356. ; 15:2, s. 009-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae.
  •  
5.
  • Nava, Veronica, et al. (författare)
  • Plastic debris in lakes and reservoirs
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 619:7969, s. 317-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic debris is thought to be widespread in freshwater ecosystems globally(1). However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging(2,3). Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 mu m) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris(4). Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.
  •  
6.
  • Rozpedowska, Elzbieta, et al. (författare)
  • Candida albicans- a pre-whole genome duplication yeast is predominantly aerobic and a poor ethanol producer.
  • 2011
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1364 .- 1567-1356. ; 11:3, s. 285-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast species belonging to the lineage that underwent the whole genome duplication (WGD), and including Saccharomyces cerevisiae, can grow under anaerobiosis and accumulate ethanol in the presence of glucose and oxygen. The pre-WGD yeasts, which branched from the S. cerevisiae lineage just prior to the WGD event, including Kluyveromyces lactis, are more dependent on oxygen and do not accumulate large amounts of ethanol in the presence of excess oxygen. Yeasts that belong to the so-called 'lower branches' of the yeast phylogenetic tree and diverged from S. cerevisiae more than 200 million years ago, have so far not been thoroughly investigated for their physiology and carbon metabolism. We have hereby studied several isolates of Candida albicans and Debaryomyces hansenii for their dependence on oxygen. C. albicans grew very poorly at oxygen concentration below 1 p.p.m. and D. hansenii could not grow at all. In aerobic batch cultivations C. albicans exhibited a predominately aerobic metabolism, accumulating only small amounts of ethanol (0.01-0.09 g g(-1) glucose). Apparently, C. albicans and several other pre-WGD yeasts still exhibit the original traits of the yeast progenitor: poor accumulation of ethanol under aerobic conditions and strong dependence on the presence of oxygen.
  •  
7.
  • Rozpedowska, Elzbieta, et al. (författare)
  • Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts.
  • 2011
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make-accumulate-consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect.
  •  
8.
  • Vigentini, Ileana, et al. (författare)
  • Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles
  • 2012
  • Ingår i: International Journal of Food Microbiology. - : Elsevier BV. - 0168-1605. ; 157:1, s. 6-15
  • Tidskriftsartikel (refereegranskat)abstract
    • In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations. (C) 2012 Elsevier B.V. All rights reserved.
  •  
9.
  • Zhou, Nerve, et al. (författare)
  • Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy