SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galand Marina) "

Sökning: WFRF:(Galand Marina)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
2.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
3.
  • Deca, Jan, et al. (författare)
  • Building a Weakly Outgassing Comet from a Generalized Ohm's Law
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 123:5
  • Tidskriftsartikel (refereegranskat)abstract
    • When a weakly outgassing comet is sufficiently close to the Sun, the formation of an ionized coma results in solar wind mass loading and magnetic field draping around its nucleus. Using a 3D fully kinetic approach, we distill the components of a generalized Ohm's law and the effective electron equation of state directly from the self-consistently simulated electron dynamics and identify the driving physics in the various regions of the cometary plasma environment. Using the example of space plasmas, in particular multispecies cometary plasmas, we show how the description for the complex kinetic electron dynamics can be simplified through a simple effective closure, and identify where an isotropic single-electron fluid Ohm's law approximation can be used, and where it fails.
  •  
4.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
5.
  • Galand, Marina, et al. (författare)
  • Ionization sources in Titan's deep ionosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A07312-
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze a multi-instrumental data set from four Titan encounters by the Cassini spacecraft to investigate in detail the formation of the ionosphere. The data set includes observations of thermospheric and ionospheric species and suprathermal electrons. A model describing the solar and electron energy deposition is used as an organizing element of the Cassini data set. We first compare the calculated secondary electron production rates with the rates inferred from suprathermal electron intensity measurements. We then calculate an effective electron dissociative recombination coefficient, applying three different approaches to the Cassini data set. Our findings are threefold: (1) The effective recombination coefficient derived under sunlit conditions in the deep ionosphere (< 1200 km) is found to be independent of solar zenith angle and flyby. Its value ranges from 6.9 x 10(-7) cm(3) s(-1) at 1200 km to 5.9 x 10(-6) cm(3) s(-1) at 970 km at 500 K. (2) The presence of an additional, minor source of ionization is revealed when the solar contribution is weak enough. The contribution by this non-solar source-energetic electrons most probably of magnetospheric origin-becomes apparent for secondary electron production rates, due to solar illumination alone, close to or smaller than about 3 x 10(-1) cm(-3) s(-1). Such a threshold is reached near the solar terminator below the main solar-driven electron production peak (< 1050 km). (3) Our ability to model the electron density in the deep ionosphere is very limited. Our findings highlight the need for more laboratory measurements of electron dissociative recombination coefficients for heavy ion species at high electron temperatures (especially near 500 K).
  •  
6.
  • Ghail, Richard C., et al. (författare)
  • EnVision : taking the pulse of our twin planet
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 337-363
  • Tidskriftsartikel (refereegranskat)abstract
    • EnVision is an ambitious but low-risk response to ESA's call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision's 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m(2) radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a (-aEuro parts per thousand 1). The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere.
  •  
7.
  • Goetz, Charlotte, et al. (författare)
  • The plasma environment of comet 67P/Churyumov-Gerasimenko
  • 2022
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 218:8
  • Forskningsöversikt (refereegranskat)abstract
    • The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.
  •  
8.
  • Hajra, Rajkumar, et al. (författare)
  • Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September : a quantitative study by the Rosetta Plasma Consortium
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:4, s. 4544-4556
  • Tidskriftsartikel (refereegranskat)abstract
    • Four interplanetary corotating interaction regions (CIRs) were identified during 2016 June-September by the Rosetta Plasma Consortium (RPC) monitoring in situ the plasma environment of the comet 67P/Churyumov-Gerasimenko (67P) at heliocentric distances of similar to 3-3.8 au. The CIRs, formed in the interface region between low- and high-speed solar wind streams with speeds of similar to 320-400 km s(-1) and similar to 580-640 km s(-1), respectively, are characterized by relative increases in solar wind proton density by factors of similar to 13-29, in proton temperature by similar to 7-29, and in magnetic field by similar to 1-4 with respect to the pre-CIR values. The CIR boundaries are well defined with interplanetary discontinuities. Out of 10 discontinuities, four are determined to be forward waves and five are reverse waves, propagating at similar to 5-92 per cent of the magnetosonic speed at angles of similar to 20 degrees-87 degrees relative to ambient magnetic field. Only one is identified to be a quasi-parallel forward shock with magnetosonic Mach number of similar to 1.48 and shock normal angle of similar to 41 degrees. The cometary ionosphere response was monitored by Rosetta from cometocentric distances of similar to 4-30 km. A quiet time plasma density map was developed by considering dependences on cometary latitude, longitude, and cometocentric distance of Rosetta observations before and after each of the CIR intervals. The CIRs lead to plasma density enhancements of similar to 500-1000 per cent with respect to the quiet time reference level. Ionospheric modelling shows that increased ionization rate due to enhanced ionizing (>12-200 eV) electron impact is the prime cause of the large cometary plasma density enhancements during the CIRs. Plausible origin mechanisms of the cometary ionizing electron enhancements are discussed.
  •  
9.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
10.
  • Lanchester, Betty, et al. (författare)
  • Separating and quantifying ionospheric responses to proton and electron precipitation over Svalbard
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A09322-
  • Tidskriftsartikel (refereegranskat)abstract
    • On 16 December 2001, a variable and structured aurora associated with a period of high solar wind velocity and low solar wind density was recorded through optical, radar, and particle measurements from the ground and space. A comprehensive analysis of this data set is carried out using a coupled auroral electron deposition and ion chemistry model. The observations include H beta, N(2)(+) 1N (0, 2), and O(+) (4)P-(4)D optical and electron density radar measurements from the ground, particle data from NOAA 16 and DMSP F14 satellites, and Doppler-shifted H Lyman alpha images from the IMAGE satellite. Modulations in the energy flux of both protons and electrons are seen in the NOAA 16 data as well as in the optical signatures measured on ground and from above. At the time of closest approach of NOAA 16, the observed emissions and electron density at the peak of an enhancement are well reproduced when precipitating protons and electrons with total fluxes of 0.23 and 3.0 mW m(-2), respectively, and mean energies of 2.50 and 0.25 keV, respectively, are used as input for the model. These values are consistent with those measured by the NOAA satellite. The resulting modeled emissions agree well with the ground measurements of enhanced emissions. The correlation between the emissions from N(2)(+) and O(+) suggests that they are primarily due to electron precipitation. This result is confirmed by the agreement between the measured and modeled emissions and by the values of extinction obtained for all three emissions. The modulations to the E region ionization can be explained by proton precipitation alone, while soft electrons are responsible for the changes to the ionization at higher altitudes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy