SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galbo Henrik) "

Sökning: WFRF:(Galbo Henrik)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsted, Thomas J., et al. (författare)
  • Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle
  • 2013
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 591:20, s. 5141-5155
  • Tidskriftsartikel (refereegranskat)abstract
    • In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for approximate to 98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.
  •  
2.
  • Donsmark, Morten, et al. (författare)
  • Hormone-Sensitive Lipase as Mediator of Lipolysis in Contracting Skeletal Muscle.
  • 2005
  • Ingår i: Exercise and Sport Sciences Reviews. - 1538-3008. ; 33:3, s. 127-133
  • Forskningsöversikt (refereegranskat)abstract
    • The authors propose that the enzyme hormone-sensitive lipase (HSL), which is the rate-limiting enzyme for hydrolysis of triacylglycerol in adipocytes, also regulates the intramyocellular triacylglycerol mobilization and is controlled by mechanisms similar to those regulating glycogen phosphorylase. From an exercise perspective, it is fascinating that the primary enzymatic setting allows simultaneous mobilization of all major extramuscular and intramuscular energy stores.
  •  
3.
  • Mulder, Hindrik, et al. (författare)
  • Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact.
  • 2003
  • Ingår i: Journal of Biological Chemistry. - 1083-351X .- 0021-9258. ; 278:38, s. 36380-36388
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid metabolism plays an important role in glucose homeostasis under normal and pathological conditions. In adipocytes, skeletal muscle, and pancreatic beta-cells, lipids are mobilized from acylglycerides by the hormone-sensitive lipase (HSL). Here, the consequences of a targeted disruption of the HSL gene for glucose homeostasis were examined. HSL null mice were slightly hyperglycemic in the fasted, but not fed state, which was accompanied by moderate hyperinsulinemia. During glucose challenges, however, disposal of the sugar was not affected in HSL null mice, presumably because of release of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance. Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia.
  •  
4.
  • Prats, Clara, et al. (författare)
  • Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine
  • 2006
  • Ingår i: Journal of Lipid Research. - 1539-7262. ; 47:11, s. 2392-2399
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of skeletal muscle lipid metabolism is needed to identify the molecular mechanisms relating intramuscular triglyceride (IMTG) to muscle metabolism and insulin sensitivity. An increasing number of proteins have been reported to be associated with intracellular triglyceride (TG), among them the PAT family members: perilipin, ADRP ( for adipocyte differentiation-related protein), and TIP47 ( for tail-interacting protein of 47 kDa). Hormone-sensitive lipase (HSL) is thought to be the major enzyme responsible for IMTG hydrolysis in skeletal muscle. In adipocytes, regulation of HSL by intracellular redistribution has been demonstrated. The existence of such regulatory mechanisms in skeletal muscle has long been hypothesized but has never been demonstrated. The aim of this study was to characterize the PAT family proteins associated with IMTG and to investigate the effect of epinephrine stimulation or muscle contraction on skeletal muscle TG content and HSL intracellular distribution. Rat soleus muscles were either incubated with epinephrine or electrically stimulated for 15 min. Single muscle fibers were used for morphological analysis by confocal and transmission electron microscopy. We show a decrease in IMTG in response to both lipolytic stimuli. Furthermore, we identify two PAT family proteins, ADRP and TIP47, associated with IMTG. Finally, we demonstrate HSL translocation to IMTG and ADRP after stimulation with epinephrine or contraction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy