SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Galiotis C) "

Search: WFRF:(Galiotis C)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ferrari, A. C., et al. (author)
  • Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
  • 2015
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:11, s. 4598-4810
  • Journal article (peer-reviewed)abstract
    • We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
  •  
2.
  •  
3.
  • Katerelos, Dionisios T.G., et al. (author)
  • Matrix cracking in polymeric composites laminates : modelling and experiments
  • 2008
  • In: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 68:12, s. 2310-2317
  • Journal article (peer-reviewed)abstract
    • Composites ability to retain functionality in the presence of damage is a crucial safety and economic issue. Generally the first damage mode in composite laminates is matrix cracking, which affects the mechanical properties of the structure long before its load-bearing capacity is exhausted. In this paper, a detailed analysis of the effect of matrix cracking on the behaviour of cross-ply [0/90]s and unbalanced symmetric [0/45]s glass/epoxy laminates loaded statically in tension is performed. Theoretical predictions of stiffness reduction due to damage are based on the Equivalent Constraint Model (ECM), which takes into account concurrent matrix cracking in all plies of the laminate, although matrix cracking under consideration is developing only within the off-axis ply of the laminates. The longitudinal Young's modulus predictions are compared to experimentally derived data obtained using laser Raman spectroscopy (LRS). The good agreement between predicted and measured values of the reduced longitudinal Young's modulus validates the ECM model and proves that its basic assumptions are accurate. Thus, the predictions for all the mechanical properties by the ECM model are within a realistic range, while experimental evidence is required for further validation.
  •  
4.
  • Anagnostopoulos, George, et al. (author)
  • Strain Engineering in Highly Wrinkled CVD Graphene/Epoxy Systems
  • 2018
  • In: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:49, s. 43192-43202
  • Journal article (peer-reviewed)abstract
    • Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 μm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.
  •  
5.
  • Backes, Claudia, et al. (author)
  • Production and processing of graphene and related materials
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Journal article (peer-reviewed)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
6.
  •  
7.
  • Katerelos, D.G., et al. (author)
  • Raman spectroscopy investigation of stiffness change and residual strains due to matrix cracking
  • 2006
  • In: Mechanics of composite materials. - : Springer Science and Business Media LLC. - 0191-5665 .- 1573-8922. ; 42:6, s. 535-546
  • Journal article (peer-reviewed)abstract
    • The matrix cracking models developed for cross-ply composite laminates have been poorly extended in the past to more complex geometries used in practice, and they are still under development. In this paper, a new detailed analysis of the effect of matrix cracking on the behaviour of cross-ply and [0/45] s laminates under uniaxial tension is attempted. The model used in this work is applicable both to cross-ply laminates and unbalanced systems. It gives exact closed-form expressions for all thermomechanical properties of a general symmetric laminate with cracks in arbitrary layers. The theoretical approach is backed by experimental data obtained by microscopic strain-state variation measurements within a specimen, with using the technique of laser Raman spectroscopy. Glass-fibre-reinforced epoxy systems were investigated. Embedded aramid fibres-sensors within the 0° ply and near the 0°/θ ° interface were necessary due to the poor Raman signal of glass. Using experimental Raman data, the residual strain and the stiffness reduction are determined as functions of increase in crack density. The stiffness reduction is predicted with a high accuracy, whereas the measured residual strains are larger than predicted. The good results for the reduction in the elastic modulus show that the basic assumption of the model is accurate. The difference is explained by the viscoelastic-viscoplastic behaviour of the off-axis layer in shear, which in creases the "apparent" residual strain. © Springer Science+Business Media, Inc. 2006.
  •  
8.
  • Katerelos, D.T.G., et al. (author)
  • Energy criterion for modelling damage evolution in cross-ply composite laminates
  • 2008
  • In: Composites Science And Technology. - : Elsevier BV. - 0266-3538 .- 1879-1050. ; 68:12, s. 2318-2324
  • Journal article (peer-reviewed)abstract
    • The energy dissipated in cross-ply laminates during loading-unloading loops is obtained from stress-strain curves for cross-ply laminates and used in an energy based approach to predict the development of matrix cracking. The dissipated energy is correlated to the crack density growth data recorded for a reference laminate. The critical strain energy release rate, Gc obtained in this way is increasing with the applied strain. This phenomenon reflects the statistical nature of Gc distribution in the 90-layer: the first cracks (lower strain) develop in positions with lower fracture toughness. The obtained Gc data are in a good agreement with fracture toughness data obtained using LEFM based "compliance calibration" model in which the stiffness change with increasing strain is used. Finally, the matrix cracking development is successfully simulated using in the LEFM model, the data for critical strain energy release rate and an earlier derived stiffness-crack density relationship. It has been demonstrated that knowing the laminates geometry and measuring the laminate stiffness reduction with strain or (alternatively measuring the dissipated energy) the damage evolution may be simulated, thus reducing the necessity for optical observations to validation only.
  •  
9.
  • Kovtun, Alessandro, et al. (author)
  • Benchmarking of graphene-based materials: Real commercial products versus ideal graphene
  • 2019
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 6:2
  • Journal article (peer-reviewed)abstract
    • There are tens of industrial producers claiming to sell graphene and related materials (GRM), mostly as solid powders. Recently the quality of commercial GRM has been questioned, and procedures for GRM quality control were suggested using Raman Spectroscopy or Atomic Force Microscopy. Such techniques require dissolving the sample in solvents, possibly introducing artefacts. A more pragmatic approach is needed, based on fast measurements and not requiring any assumption on GRM solubility. To this aim, we report here an overview of the properties of commercial GRM produced by selected companies in Europe, USA and Asia. We benchmark: (A) size, (B) exfoliation grade and (C) oxidation grade of each GRM versus the ones of 'ideal' graphene and, most importantly, versus what reported by the producer. In contrast to previous works, we report explicitly the names of the GRM producers and we do not re-dissolve the GRM in solvents, but only use techniques compatible with industrial powder metrology. A general common trend is observed: Products having low defectivity (%sp 2 bonds >95%) feature low surface area (<200 m 2 g -1 ), while highly exfoliated GRM show a lower sp 2 content, demonstrating that it is still challenging to exfoliate GRM at industrial level without adding defects.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view