SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Galland F.) "

Sökning: WFRF:(Galland F.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lagrange, A. M., et al. (författare)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
2.
  • Galland, Olivier, et al. (författare)
  • Application of open-source photogrammetric software MicMac for monitoring surface deformation in laboratory models
  • 2016
  • Ingår i: Journal of Geophysical Research - Solid Earth. - 2169-9313 .- 2169-9356. ; 121:4, s. 2852-2872
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying deformation is essential inmodern laboratorymodels of geological systems. This paper presents a new laboratory monitoring method through the implementation of the open-source software MicMac, which efficiently implements photogrammetry in Structure-from-Motion algorithms. Critical evaluation is provided using results from two example laboratory geodesy scenarios: magma emplacement and strike-slip faulting. MicMac automatically processes images fromsynchronized cameras to compute time series of digital elevation models (DEMs) and orthorectified images of model surfaces. MicMac also implements digital image correlation to produce high-resolution displacements maps. The resolution of DEMs and displacement maps corresponds to the pixel size of the processed images. Using 24 MP cameras, the precision of DEMs and displacements is similar to 0.05mm on a 40 x 40 cm surface. Processing displacement maps with Matlab (R) scripts allows automatic fracturemapping on themonitored surfaces. MicMac also offers the possibility to integrate 3-Dmodels of excavated structures with the corresponding surface deformation data. The high resolution and high precision of MicMac results and the ability to generate virtual 3-D models of complex structures make it a very promising tool for quantitative monitoring in laboratory models of geological systems.
  •  
3.
  • Guldstrand, F., et al. (författare)
  • Dynamics of Surface Deformation Induced by Dikes and Cone Sheets in a Cohesive Coulomb Brittle Crust
  • 2017
  • Ingår i: Journal of Geophysical Research - Solid Earth. - : American Geophysical Union (AGU). - 2169-9313 .- 2169-9356. ; 122:10, s. 8511-8524
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of surface deformation associated with intruding magma has become an established method to study subsurface processes and intrusion architecture. Active subsurface magmatism induces deformation that is commonly modeled using static elastic models. To what extent, Coulomb failure of the crust affects surface deformation remains, so far, largely unexplored. In this contribution we present quantitative laboratory results of surface deformation induced by the emplacement of simulated dikes and cone sheets in a cohesive Coulomb material. The analysis of the experimental surface deformation shows that these intrusion types produce distinct and characteristic surface deformation signatures, which reflect the evolution of the intrusion at depth. Generally, dikes show a two-phase evolution while cone sheets develop gradually. In comparison, cone sheets induce larger uplifted areas and volumes than dikes relative to the depth of the injection source. Dike formation is, in turn, is likely accommodated, to a larger degree than cone sheets, by lateral opening of the host consistent with our current understanding of dike emplacement mechanics. Notably, only surface uplifts develop above the experimental dikes, consistent with a viscous indenter propagation mechanism, that is, a dike pushing ahead. The measured surface deformation patterns associated with dikes starkly contrast with established static, elastic models that predict local subsidence above the tip of a dike. This suggests that Coulomb failure of crustal rocks may considerably affect surface deformation induced by propagating igneous intrusions. This is especially relevant when a relatively high viscosity magma intrudes a weak host, such as unconsolidated sedimentary and volcaniclastic rocks.
  •  
4.
  • Leimbach, David, 1992, et al. (författare)
  • The electron affinity of astatine
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron–electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy