SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gan Yanling) "

Sökning: WFRF:(Gan Yanling)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Huijing, et al. (författare)
  • Application of olfactory ensheathing cells in clinical treatment of spinal cord injury : meta-analysis and prospect
  • 2019
  • Ingår i: JOURNAL OF NEURORESTORATOLOGY. - 2324-2426. ; 7:2, s. 70-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:A number of clinical trials of olfactory ensheathing cells (OECs) for the treatment of chronic spinal cord injury (SCI) have been carried out all over the world. However, their safety and efficacy have not been basically evaluated. Moreover, there are no uniform standards laid out for the use of optimal source, transplantation method and the dosage of OECs.Objective:This study evaluated the source, dose, and route of transplantation of OECs for the treatment of chronic SCI.Methods: PubMed, Cochrane Library, EMBASE, CNKI, and Wanfang Data were searched for the clinical studies of OECs in the treatment of chronic SCI on July 2018.Results:A total of 30 articles on OECs transplantation for chronic SCI were selected for comprehensive evaluation of OECs sources, doses, and transplantation methods. The efficacy of OECs in the treatment of chronic SCI was evaluated using Review Manager 5.3.Conclusion:Fetal OECs are the primary source of cells for the treatment of chronic SCI in OECs, with standardized cell-culture and quality-control processes. Fetal OECs can significantly improve the neurological function of patients with chronic SCI. It is an ideal cell therapy for neurorestoration. However to explore more precise and minimally invasive treatment options are required in the future.
  •  
2.
  • Gan, Zhixing, et al. (författare)
  • Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates : consensus, debates and challenges
  • 2016
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 8:15, s. 7794-7807
  • Forskningsöversikt (refereegranskat)abstract
    • Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application.
  •  
3.
  • Li, Cong, et al. (författare)
  • Advanced multimodal imaging in differentiating glioma recurrence from post-radiotherapy changes
  • 2020
  • Ingår i: Novel therapeutic advances in glioblastoma. - LONDON ENGLAND : Elsevier. - 9780128211144 ; , s. 281-297
  • Bokkapitel (refereegranskat)abstract
    • Gliomas are the most common malignant primary brain tumor, and their prognosis is extremely poor. Radiotherapy is an important treatment for glioma patients, but the changes caused by radiotherapy have brought difficulties in clinical image evaluation because differentiating glioma recurrence from post-radiotherapy changes including pseudo-progression (PD) and radiation necrosis (RN) remains a challenge. Therefore, accurate and reliable imaging evaluation is very important for making clinical decisions. In recent years, advanced multimodal imaging techniques have been applied to achieve the goal of better differentiating glioma recurrence from post-radiotherapy changes for minimizing errors associated with interpretation of treatment effects. In this review, we discuss the recent applications of advanced multimodal imaging such as diffusion MRI sequences, amide proton transfer MRI sequences, perfusion MRI sequences, MR spectroscopy and multinuclides PET/CT in the evaluation of post-radiotherapy treatment response in glioma patients and highlight their potential role in differentiating post-radiotherapy changes from glioma recurrence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy