SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gao Yi Fei) "

Sökning: WFRF:(Gao Yi Fei)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
4.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
5.
  • Kristan, Matej, et al. (författare)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • Ingår i: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
6.
  • Wu, Zi Yi, et al. (författare)
  • Convective transport characteristics of condensing droplets in moist air flow
  • 2023
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 35:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensation of convective moist air flow is a crucial physical process and is directly related to various industries. It is essential to understand the underlying growth mechanism of condensing droplets, while past studies have commonly considered convective transport with a negligible/simplified approach. In this work, a three-dimensional transient multiphysics coupling model was developed to investigate the transport characteristics of condensing droplets in convective moist air flow. This model typically interconnects heat transfer with vapor-liquid phase change, mass transport, and fluid flow. The results reveal that convective flow significantly dominates heat and mass transport during condensation. On the gas side, the incoming flow thins the diffusion layer at the windward part with a large concentration gradient. However, a low vapor-concentration zone behind the droplet is formed due to the resulting rear-side vortex, which presents an increased influence as the contact angle increases. By forcing molecular diffusion with convection transport, vapor transport from surroundings to the condensing interface is enhanced several times depending on the Reynolds number. Within the droplet, the flow shearing at the interface is principally responsible for the strong internal convection, while the Marangoni effect is negligible. The internal flow greatly affects the droplet temperature profile with a large gradient close to the base. Finally, convective flow contributes to over 3.3 times higher overall heat transfer coefficient than the quiescent environment. In addition, in interaction-governed growth, transport characteristics depend on not only the size and space distributions of droplets but also the interaction between droplets and convective flow.
  •  
7.
  • Zheng, Shao Fei, et al. (författare)
  • Theoretical and Three-Dimensional Molecular Dynamics Study of Droplet Wettability and Mobility on Lubricant-Infused Porous Surfaces
  • 2023
  • Ingår i: Langmuir. - 0743-7463. ; 39:37, s. 13371-13385
  • Tidskriftsartikel (refereegranskat)abstract
    • Profiting from their slippery nature, lubricant-infused porous surfaces endow with droplets excellent mobility and consequently promise remarkable heat transfer improvement for dropwise condensation. To be a four-phase wetting system, the droplet wettability configurations and the corresponding dynamic characteristics on lubricant-infused porous surfaces are closely related to many factors, such as multiple interfacial interactions, surface features, and lubricant thickness, which keeps a long-standing challenge to promulgate the underlying physics. In this work, thermodynamically theoretical analysis and three-dimensional molecular dynamics simulations with the coarse-grained water and hexane models are carried out to explore droplet wettability and mobility on lubricant-infused porous surfaces. Combined with accessible theoretical criteria, phase diagrams of droplet configurations are constructed with a comprehensive consideration of interfacial interactions, surface structures, and lubricant thickness. Subsequently, droplet sliding and coalescence dynamics are quantitatively defined under different configurations. Finally, in terms of the promotion of dropwise condensation, a non-cloaking configuration with the encapsulated state underneath the droplet is recommended to achieve high droplet mobility owing to the low viscous drag of the lubricant and the eliminated pinning effect of the contact line. On the basis of the low oil-water and water-solid interactions, a stable lubricant layer with a relatively low thickness is suggested to construct slippery surfaces.
  •  
8.
  • Zheng, Shao Fei, et al. (författare)
  • Transient multiphysics coupled model for multiscale droplet condensation out of moist air
  • 2023
  • Ingår i: Numerical Heat Transfer; Part A: Applications. - : Informa UK Limited. - 1040-7782 .- 1521-0634. ; 84:1, s. 16-34
  • Tidskriftsartikel (refereegranskat)abstract
    • As a key physical process, water vapor condensation has attracted significant attention because of its potential in engineering applications. The non-condensable gas in the surrounding vapor has a significant influence on condensation heat transfer. Considering as a crucial aspect, this work developed a transient multiphysics coupled solver to investigate droplet condensation in a moist air environment (considering dry air as the non-condensable gas). The current solver couples the time-dependent vapor-liquid phase-change heat transfer, mass transport of water vapor, and two-phase fluid flow. In contrast to the classical thermal resistance theory model, this solver can capture the dynamic and strong coupling characteristics during condensation comprehensively. The results demonstrate that for small-scale droplets, vapor condensation is driven by the coupled internal conduction-dominated heat transfer and external vapor diffusion. As the droplet grows and the contact angle increases, internal convection driven by the Marangoni effect becomes increasingly important. The enhanced fluid mixing inside the droplet can affect both the internal heat transfer and the external vapor diffusion. Because of the significant diffusion resistance, the droplet growth rates in a moist air environment are reduced up to 1-2 orders of magnitude compared with the case of pure steam. For large-scale droplets, the internal convection can increase the droplet growth rate up to 18.7%. Furthermore, the contact angle, the subcooling temperature, and the relative humidity have significant influences on droplet condensation in a moist air environment. This work not only promotes the mechanistic understanding of condensation heat transfer in a moist air ambient but also provides a flexible solver for vapor-liquid phase change problems.
  •  
9.
  • Kristan, Matej, et al. (författare)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • Ingår i: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
10.
  • Li, Fei, et al. (författare)
  • Towards A Solar Fuel Device : Light-Driven Water Oxidation Catalyzed by a Supramolecular Assembly
  • 2012
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 51:10, s. 2417-2420
  • Tidskriftsartikel (refereegranskat)abstract
    • Time to split: Supramolecular assemblies containing both photosensitizers and a ruthenium water-oxidation catalyst were prepared and characterized. The pictured assembly exhibits, for the first time, enhanced visible-light-driven water oxidation activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (10)
konferensbidrag (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Sundén, Bengt (5)
Wang, Xiao-Dong (5)
Wang, Dong (4)
Zhang, Yi (4)
van de Weijer, Joost (3)
Zhang, Li (3)
visa fler...
Bhat, Goutam (3)
Matas, Jiri (3)
Yang, Ming-Hsuan (3)
Fernandez, Gustavo (3)
Lukezic, Alan (3)
Liu, Yang (2)
Wang, Fei (2)
Zhang, Wei (2)
Li, Jing (2)
Li, Xin (2)
Li, Wei (2)
Uversky, Vladimir N. (2)
Gao, Jie (2)
Chen, Xin (2)
Li, Jun (2)
Li, Bo (2)
Bai, Shuai (2)
Felsberg, Michael, 1 ... (2)
Mills, Gordon B (2)
Khan, Fahad Shahbaz, ... (2)
Danelljan, Martin (2)
Yang, Yi (2)
Zhao, Fei (2)
Van Gool, Luc (2)
Zhao, Jie (2)
Zhang, Jianhua (2)
Eldesokey, Abdelrahm ... (2)
Outeiro, Tiago. F (2)
Kristan, Matej (2)
Leonardis, Ales (2)
Pflugfelder, Roman (2)
Wang, Jinqiao (2)
Bertinetto, Luca (2)
Valmadre, Jack (2)
He, Zhenyu (2)
Galluzzi, Luca (2)
Gao, Tian (2)
Campbell, Matthew (2)
Jiang, Yi (2)
Dong, Zheng (2)
Eskelinen, Eeva-Liis ... (2)
Wang, Horng-Dar (2)
Wilkinson, Simon (2)
Andersen, Stig U (2)
visa färre...
Lärosäte
Lunds universitet (7)
Linköpings universitet (4)
Chalmers tekniska högskola (3)
Göteborgs universitet (2)
Umeå universitet (2)
Högskolan i Halmstad (2)
visa fler...
Stockholms universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Teknik (4)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy