SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garatti A. Caratti o.) "

Sökning: WFRF:(Garatti A. Caratti o.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garcia-Lopez, R., et al. (författare)
  • A measure of the size of the magnetospheric accretion region in TW Hydrae
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 584:7822, s. 547-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1–3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4–6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).
  •  
2.
  • Tabone, B., et al. (författare)
  • A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star
  • 2023
  • Ingår i: Nature Astronomy. - 2397-3366. ; 7:7, s. 805-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon is an essential element for life but how much can be delivered to young planets is still an open question. The chemical characterization of planet-forming disks is a crucial step in our understanding of the diversity and habitability of exoplanets. Very low-mass stars (less than 0.2 M⊙) are interesting targets because they host a rich population of terrestrial planets. Here we present the James Webb Space Telescope detection of abundant hydrocarbons in the disk of a very low-mass star obtained as part of the Mid-InfraRed Instrument mid-INfrared Disk Survey (MINDS). In addition to very strong and broad emission from C2H2 and its 13C12CH2 isotopologue, C4H2, benzene and possibly CH4 are identified, but water, polycyclic aromatic hydrocarbons and silicate features are weak or absent. The lack of small silicate grains indicates that we can look deep down into this disk. These detections testify to an active warm hydrocarbon chemistry with a high C/O ratio larger than unity in the inner 0.1 astronomical units (AU) of this disk, perhaps due to destruction of carbonaceous grains. The exceptionally high C2H2/CO2 and C2H2/H2O column density ratios indicate that oxygen is locked up in icy pebbles and planetesimals outside the water iceline. This, in turn, will have important consequences for the composition of forming exoplanets.
  •  
3.
  • Koutoulaki, M., et al. (författare)
  • The GRAVITY young stellar object survey: IV. The CO overtone emission in 51 Oph at sub-au scales
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. 51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 μm, most likely originating in the innermost regions of a circumstellar disc. Aims. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc. Methods. We used the second-generation Very Large Telescope Interferometer instrument GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple local thermal equilibrium ring model of the CO emission to reproduce the spectrum and CO line displacements. Results. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of ∼10.58 ± 2.65R·. The K-band continuum emission from the disc is inclined by 63° ± 1°, with a position angle of 116° ± 1°, and 4 ± 0.8 mas (0.5 ± 0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation radius. By modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T = 1900-2800 K) and dense (NCO = (0.9-9) × 1021 cm-2) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10 ± 0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc. Conclusions. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.
  •  
4.
  • Perotti, G., et al. (författare)
  • Water in the terrestrial planet-forming zone of the PDS 70 disk
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 620:7974, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial and sub-Neptune planets are expected to form in the inner (less than 10 AU) regions of protoplanetary disks1. Water plays a key role in their formation2,3,4, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk5,6. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks7, similar to PDS 70, the first system with direct confirmation of protoplanet presence8,9. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (approximately 54 AU) planet-carved gap separating an inner and outer disk10,11. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2 and/or OH, and survival through water self-shielding5. This is also supported by the presence of CO2 emission, another molecule sensitive to ultraviolet photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir12. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.
  •  
5.
  • Garatti, A. Caratti o., et al. (författare)
  • The GRAVITY young stellar object survey: II. First spatially resolved observations of the CO bandhead emission in a high-mass YSO
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The inner regions of the discs of high-mass young stellar objects (HMYSOs) are still poorly known due to the small angular scales and the high visual extinction involved. Aims. We deploy near-infrared spectro-interferometry to probe the inner gaseous disc in HMYSOs and investigate the origin and physical characteristics of the CO bandhead emission (2.3-2.4 m). Methods. We present the first GRAVITY/VLTI observations at high spectral (R = 4000) and spatial (mas) resolution of the CO overtone transitions in NGC2024 IRS 2. Results. The continuum emission is resolved in all baselines and is slightly asymmetric, displaying small closure phases (8). Our best ellipsoid model provides a disc inclination of 34 1, a disc major axis position angle (PA) of 166 1, and a disc diameter of 3:99 0:09 mas (or 1.69 0.04 au, at a distance of 423 pc). The small closure phase signals in the continuum are modelled with a skewed rim, originating from a pure inclination effect. For the first time, our observations spatially and spectrally resolve the first four CO bandheads. Changes in visibility, as well as differential and closure phases across the bandheads are detected. Both the size and geometry of the CO-emitting region are determined by fitting a bidimensional Gaussian to the continuum-compensated CO bandhead visibilities. The CO-emitting region has a diameter of 2.740:08 0:07 mas (1.16 0.03 au), and is located in the inner gaseous disc, well within the dusty rim, with inclination and PA matching the dusty disc geometry, which indicates that both dusty and gaseous discs are coplanar. Physical and dynamical gas conditions are inferred by modelling the CO spectrum. Finally, we derive a direct measurement of the stellar mass of M 14:7 M by combining our interferometric and spectral modelling results.
  •  
6.
  • Garcia-Lopez, R., et al. (författare)
  • The GRAVITY young stellar object survey XII. The hot gas disk component in Herbig Ae/Be stars
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The region of protoplanetary disks closest to a star (within 1–2 au) is shaped by a number of different processes, from accretion of the disk material onto the central star to ejection in the form of winds and jets. Optical and near-IR emission lines are potentially good tracers of inner disk processes if very high spatial and/or spectral resolution are achieved. Aims. In this paper, we exploit the capabilities of the VLTI-GRAVITY near-IR interferometer to determine the location and kinematics of the hydrogen emission line Brγ. Methods. We present VLTI-GRAVITY observations of the Brγ line for a sample of 26 stars of intermediate mass (HAEBE), the largest sample so far analysed with near-IR interferometry. Results. The Brγ line was detected in 17 objects. The emission is very compact (in most cases only marginally resolved), with a size of 10–30 R∗(1–5 mas). About half of the total flux comes from even smaller regions, which are unresolved in our data. For eight objects, it was possible to determine the position angle (PA) of the line-emitting region, which is generally in agreement with that of the inner-dusty disk emitting the K-band continuum. The position-velocity pattern of the Brγ line-emitting region of the sampled objects is roughly consistent with Keplerian rotation. The exception is HD 45677, which shows more extended emission and more complex kinematics. The most likely scenario for the Brγ origin is that the emission comes from an MHD wind launched very close to the central star, in a region well within the dust sublimation radius. An origin in the bound gas layer at the disk surface cannot be ruled out, while accreting matter provides only a minor fraction of the total flux. Conclusions. These results show the potential of near-IR spectro-interferometry to study line emission in young stellar objects.
  •  
7.
  • Grant, Sierra L., et al. (författare)
  • MINDS. The Detection of 13 CO 2 with JWST-MIRI Indicates Abundant CO 2 in a Protoplanetary Disk
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 947:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST-MIRI Medium Resolution Spectrometer (MRS) spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey Guaranteed Time Observations program. Emission from 12CO213CO2, H2O, HCN, C2H2, and OH is identified with 13CO2 being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few astronomical units of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The Q branches of these molecules, including those of hot bands, are particularly sensitive to temperature and column density. We find that the 12CO2 emission in the GW Lup disk is coming from optically thick emission at a temperature of ∼400 K. 13CO2 is optically thinner and based on a lower temperature of ∼325 K, and thus may be tracing deeper into the disk and/or a larger emitting radius than 12CO2. The derived N CO 2 / N H 2 O ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on Spitzer-InfraRed-Spectrograph data. This high column density ratio may be due to an inner cavity with a radius in between the H2O and CO2 snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.
  •  
8.
  • Crowe, S., et al. (författare)
  • Near-infrared observations of outflows and young stellar objects in the massive star-forming region AFGL 5180
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive stars play important roles throughout the universe; however, their formation remains poorly understood. Observations of jets and outflows in high-mass star-forming regions, as well as surveys of young stellar object (YSO) content, can help test theoretical models of massive star formation. Aims. We aim at characterizing the massive star-forming region AFGL 5180 in the near-infrared (NIR), identifying outflows and relating these to sub-mm/mm sources, as well as surveying the overall YSO surface number density to compare to massive star formation models. Methods. Broad- and narrow-band imaging of AFGL 5180 was made in the NIR with the Large Binocular Telescope, in both seeing-limited (~0.5′) and high angular resolution (~0.09′) Adaptive Optics (AO) modes, as well as with the Hubble Space Telescope. Archival continuum data from the Atacama Millimeter/Submillimeter Array (ALMA) was also utilized. Results. At least 40 jet knots were identified via NIR emission from H2 and [FeII] tracing shocked gas. Bright jet knots outflowing from the central most massive protostar, S4 (estimated mass ~11 M⊙, via SED fitting), are detected towards the east of the source and are resolved in fine detail with the AO imaging. Additional knots are distributed throughout the field, likely indicating the presence of multiple driving sources. Sub-millimeter sources detected by ALMA are shown to be grouped in two main complexes, AFGL 5180 M and a small cluster ~15′ (0.15 pc in projection) to the south, AFGL 5180 S. From our NIR continuum images we identify YSO candidates down to masses of ~0.1 M⊙. Combined with the sub-mm sources, this yields a surface number density of such YSOs of N* ~ 103pc-2 within a projected radius of about 0.1 pc. Such a value is similar to those predicted by models of both core accretion from a turbulent clump environment and competitive accretion. The radial profile of N* is relatively flat on scales out to 0.2 pc, with only modest enhancement around the massive protostar inside 0.05 pc, which provides additional constraints on these massive star formation models. Conclusions. This study demonstrates the utility of high-resolution NIR imaging, in particular with AO, for detecting outflow activity and YSOs in distant regions. The presented images reveal the complex morphology of outflow-shocked gas within the large-scale bipolar flow of a massive protostar, as well as clear evidence for several other outflow driving sources in the region. Finally, this work presents a novel approach to compare the observed YSO surface number density from our study against different models of massive star formation.
  •  
9.
  • Beuther, H., et al. (författare)
  • JWST Observations of Young protoStars (JOYS): Outflows and accretion in the high-mass star-forming region IRAS 23385+6053
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding the earliest stages of star formation, and setting it in the context of the general cycle of matter in the interstellar medium, is a central aspect of research with the James Webb Space Telescope (JWST). Aims. The JWST program JOYS (JWST Observations of Young protoStars) aims to characterize the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS 23385+6053. Methods. The JOYS program uses the Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) with its integral field unit (IFU) to investigate a sample of high- and low-mass star-forming protostellar systems. Results. The full 5-? 28 μm MIRI MRS spectrum of IRAS 23385+6053 shows a plethora of interesting features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers such as the H2(0-? 0)S(7), [FeII](4F9/2-6D9/2), and [NeII](2P1/2-2P3/2) lines, and the potential accretion tracer Humphreys α H I(7-6). The short-wavelength MIRI data resolve two continuum sources, A and B; mid-infrared source A is associated with the main millimeter continuum peak. The combination of mid-infrared and millimeter data reveals a young cluster in the making. Combining the mid-infrared outflow tracers H2, [FeII], and [NeII] with millimeter SiO data reveals a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys α line is detected at a 3-?4σ? level toward the mid-infrared sources A and B. One can roughly estimate both accretion luminosities and corresponding accretion rates to be between ∼2.6 × 10-6 and ∼0.9 × 10-4 Mo yr-1. This is discussed in the context of the observed outflow rates. Conclusions. The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures, as well as the enormous potential of JWST to boost our understanding of the physical and chemical processes at play during star formation.
  •  
10.
  • Costa Silva, A. R., et al. (författare)
  • NIR jets from a clustered region of massive star formation: Morphology and composition in the IRAS 18264-1152 region
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive stars play crucial roles in determining the physical and chemical evolution of galaxies. However, they form deeply embedded in their parental clouds, making it challenging to directly observe these stars and their immediate environments. It is known that accretion and ejection processes are intrinsically related, thus observing the massive protostellar outflows can provide crucial information about the processes governing massive star formation very close to the central engine. Aims. We aim to probe the IRAS 18264-1152 (also known as G19.88-0.53) high-mass star-forming complex in the near infrared (NIR) through its molecular hydrogen (H2) jets to analyse the morphology and composition of the line emitting regions and to compare with other outflow tracers. Methods. We observed the H2 NIR jets via K-band (1.9 2.5 μm) observations obtained with the integral field units VLT/SINFONI and VLT/KMOS. VLT/SINFONI provides the highest NIR angular resolution achieved so far for the central region of IRAS 18264-1152 (∼0.2). We compared the geometry of the NIR outflows with that of the associated molecular outflow, probed by CO (2-1) emission mapped with the Submillimeter Array. Results. We identify nine point sources in the SINFONI and KMOS fields of view. Four of these display a rising continuum in the K-band and are Brγ emitters, revealing that they are young, potentially jet-driving sources. The spectro-imaging analysis focusses on the H2 jets, for which we derived visual extinction, temperature, column density, area, and mass. The intensity, velocity, and excitation maps based on H2 emission strongly support the existence of a protostellar cluster in this region, with at least two (and up to four) different large-scale outflows, found through the NIR and radio observations. We compare our results with those found in the literature and find good agreement in the outflow morphology. This multi-wavelength comparison also allows us to derive a stellar density of ∼4000 stars pc-3. Conclusions. Our study reveals the presence of several outflows driven by young sources from a forming cluster of young, massive stars, demonstrating the utility of such NIR observations for characterising massive star-forming regions. Moreover, the derived stellar number density together with the geometry of the outflows suggest that stars can form in a relatively ordered manner in this cluster.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy