SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garcia Millan Virginia) "

Sökning: WFRF:(Garcia Millan Virginia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garcia Millan, Virginia E., et al. (författare)
  • Crop loss evaluation using digital surface models from unmanned aerial vehicles data
  • 2020
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Precision agriculture and Unmanned Aerial Vehicles (UAV) are revolutionizing agriculture management methods. Remote sensing data, image analysis and Digital Surface Models derived from Structure from Motion and Multi-View Stereopsis offer new and fast methods to detect the needs of crops, greatly improving crops efficiency. In this study, we present a tool to detect and estimate crop damage after a disturbance (i.e., weather event, wildlife attacks or fires). The types of damage that are addressed in this study affect crop structure (i.e., plants are bent or gone), in the shape of depressions in the crop canopy. The aim of this study was to evaluate the performance of four unsupervised methods based on terrain analyses, for the detection of damaged crops in UAV 3D models: slope detection, variance analysis, geomorphology classification and cloth simulation filter. A full workflow was designed and described in this article that involves the postprocessing of the raw results from the terrain analyses, for a refinement in the detection of damages. Our results show that all four methods performed similarly well after postprocessing-reaching an accuracy above to 90%-in the detection of severe crop damage, without the need of training data. The results of this study suggest that the used methods are effective and independent of the crop type, crop damage and growth stage. However, only severe damages were detected with this workflow. Other factors such as data volume, processing time, number of processing steps and spatial distribution of targets and errors are discussed in this article for the selection of the most appropriate method. Among the four tested methods, slope analysis involves less processing steps, generates the smallest data volume, is the fastest of methods and resulted in best spatial distribution of matches. Thus, it was selected as the most efficient method for crop damage detection.
  •  
2.
  • Kooistra, Lammert, et al. (författare)
  • Reviews and syntheses : Remotely sensed optical time series for monitoring vegetation productivity
  • 2024
  • Ingår i: Biogeosciences. - 1726-4170. ; 21:2, s. 473-511
  • Forskningsöversikt (refereegranskat)abstract
    • Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring.
  •  
3.
  • Olsson, Per Ola, et al. (författare)
  • Radiometric correction of multispectral uas images : Evaluating the accuracy of the parrot sequoia camera and sunshine sensor
  • 2021
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Unmanned aerial systems (UAS) carrying commercially sold multispectral sensors equipped with a sunshine sensor, such as Parrot Sequoia, enable mapping of vegetation at high spatial resolution with a large degree of flexibility in planning data collection. It is, however, a challenge to perform radiometric correction of the images to create reflectance maps (orthomosaics with surface reflectance) and to compute vegetation indices with sufficient accuracy to enable comparisons between data collected at different times and locations. Studies have compared different radiometric correction methods applied to the Sequoia camera, but there is no consensus about a standard method that provides consistent results for all spectral bands and for different flight conditions. In this study, we perform experiments to assess the accuracy of the Parrot Sequoia camera and sunshine sensor to get an indication if the quality of the data collected is sufficient to create accurate reflectance maps. In addition, we study if there is an influence of the atmosphere on the images and suggest a workflow to collect and process images to create a reflectance map. The main findings are that the sensitivity of the camera is influenced by camera temperature and that the atmosphere influences the images. Hence, we suggest letting the camera warm up before image collection and capturing images of reflectance calibration panels at an elevation close to the maximum flying height to compensate for influence from the atmosphere. The results also show that there is a strong influence of the orientation of the sunshine sensor. This introduces noise and limits the use of the raw sunshine sensor data to compensate for differences in light conditions. To handle this noise, we fit smoothing functions to the sunshine sensor data before we perform irradiance normalization of the images. The developed workflow is evaluated against data from a handheld spectroradiometer, giving the highest correlation (R2 = 0.99) for the normalized difference vegetation index (NDVI). For the individual wavelength bands, R2 was 0.80–0.97 for the red-edge, near-infrared, and red bands.
  •  
4.
  • Thapa, Shangharsha, et al. (författare)
  • Assessing forest phenology : A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, phenocam) and satellite (MODIS, sentinel-2) remote sensing
  • 2021
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different aspects of forest phenology based on observations from these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains a challenge. Accordingly, this research explores the potential of near-surface sensors to track the temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS, Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Vegetation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green & Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The regression analysis between time series of NDVI data from different sensors shows the high Pearson’s correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and significant differences in slope during green-up and senescence periods. SRS showed the most distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the canopy better than the other indices, with a well-defined start, end, and peak of the season, and was most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS) could be predicted with an accuracy of <3 days with GCC, while these metrics from VIgreen and NDVI resulted in a slightly higher bias of (3–10) days. The observed agreement between UAVNDVI vs. satelliteNDVI and PhenoCamGCC vs. satelliteGCC suggests that it is feasible to use PhenoCams and UAVs for satellite data validation and upscaling. Thus, a combination of these near-surface vegetation metrics is promising for a holistic understanding of vegetation phenology from canopy perspective and could serve as a good foundation for analysing the interoperability of different sensors for vegetation dynamics and change analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy