SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garcia Salcedo Raúl) "

Sökning: WFRF:(Garcia Salcedo Raúl)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
2.
  • Garcia-Salcedo, Raúl, et al. (författare)
  • Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps
  • 2014
  • Ingår i: Febs Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 281:7, s. 1901-1917
  • Tidskriftsartikel (refereegranskat)abstract
    • The AMP-activated protein kinase, AMPK, controls energy homeostasis in eukaryotic cells but little is known about the mechanisms governing the dynamics of its activation/deactivation. The yeast AMPK, SNF1, is activated in response to glucose depletion and mediates glucose de-repression by inactivating the transcriptional repressor Mig1. Here we show that overexpression of the Snf1-activating kinase Sak1 results, in the presence of glucose, in constitutive Snf1 activation without alleviating glucose repression. Co-overexpression of the regulatory subunit Reg1 of the Glc-Reg1 phosphatase complex partly restores glucose regulation of Snf1. We generated a set of 24 kinetic mathematical models based on dynamic data of Snf1 pathway activation and deactivation. The models that reproduced our experimental observations best featured (a) glucose regulation of both Snf1 phosphorylation and dephosphorylation, (b) determination of the Mig1 phosphorylation status in the absence of glucose by Snf1 activity only and (c) a regulatory step directing active Snf1 to Mig1 under glucose limitation. Hence it appears that glucose de-repression via Snf1-Mig1 is regulated by glucose via at least two independent steps: the control of activation of the Snf1 kinase and directing active Snf1 to inactivating its target Mig1.
  •  
3.
  • Tian, Ye, 1975, et al. (författare)
  • The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae
  • 2014
  • Ingår i: FEBS Letters. - : Wiley. - 1873-3468 .- 0014-5793. ; 588:12, s. 2070-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK alpha 1-subunit was glucose-regulated, albeit not by the G1c7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNFl. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated alpha 1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy