SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garratt Michael P.D.) "

Sökning: WFRF:(Garratt Michael P.D.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alejandre, Elizabeth M., et al. (författare)
  • Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment
  • 2023
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:8, s. 3445-3454
  • Tidskriftsartikel (refereegranskat)abstract
    • While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.
  •  
2.
  • Gagic, Vesna, et al. (författare)
  • Combined effects of agrochemicals and ecosystem services on crop yield across Europe
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1427-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.
  •  
3.
  • Gardner, Emma, et al. (författare)
  • Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2287-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators experience large spatiotemporal fluctuations in resource availability when mass-flowering crops are rotated with resource-poor cereal crops. Yet, few studies have considered the effect this has on pollinator population stability, nor how this might be mitigated to maintain consistent crop pollination services. We assess the potential of boundary features (standard narrow 1 m grassy margins, hedgerows and wide 4 m agri-environment margins) to support and stabilise pollinator populations and pollination service in agricultural landscapes under crop rotation. Assuming a 6-year rotation, we use a process-based pollinator model to predict yearly pollinator population size and in-crop visitation rates to oilseed rape and field bean across 117 study landscapes in England with varying amounts of boundary features. We model both ground-nesting bumblebees and solitary bees and compare the predictions including and excluding boundary features from the landscapes. Ground-nesting bumblebee populations, whose longer-lifetime colonies benefit from continuity of resources, were larger and more stable (relative to the no-features scenario) in landscapes with more boundary features. Ground-nesting solitary bee populations were also larger but not significantly more stable, except with the introduction of wide permanent agri-environment margins, due to their shorter lifetimes and shorter foraging/dispersal ranges. Crop visitation by ground-nesting bumblebees was greater and more stable in landscapes with more boundary features, partly due to increased colony growth prior to crop flowering. Time averaged crop visitation by ground-nesting solitary bees was slightly lower, due to females dividing their foraging time between boundary features and the crop. However, despite this, the minimum pollination service delivered was higher, due to the more stable delivery. Synthesis and applications. Field boundary features have an important role in stabilising pollinator populations and pollination service in rotational systems, although maintenance of larger semi-natural habitat patches may be more effective for stabilising less mobile solitary bee populations. We recommend using combinations of boundary features, accounting for pollinator range when spacing features/rotating crops, and synchronising boundary feature management with crop rotation to maximise their stabilising benefits.
  •  
4.
  • Gardner, Emma, et al. (författare)
  • Reliably predicting pollinator abundance : Challenges of calibrating process-based ecological models
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 11:12, s. 1673-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination is a key ecosystem service for global agriculture but evidence of pollinator population declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to identify areas at risk of pollination service deficit and effectively target resources to support pollinator populations. Many models exist which predict pollinator abundance but few have been calibrated against observational data from multiple habitats to ensure their predictions are accurate. We selected the most advanced process-based pollinator abundance model available and calibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great Britain. We compared three versions of the model: one parameterised using estimates based on expert opinion, one where the parameters are calibrated using a purely data-driven approach and one where we allow the expert opinion estimates to inform the calibration process. All three model versions showed significant agreement with the survey data, demonstrating this model's potential to reliably map pollinator abundance. However, there were significant differences between the nesting/floral attractiveness scores obtained by the two calibration methods and from the original expert opinion scores. Our results highlight a key universal challenge of calibrating spatially explicit, process-based ecological models. Notably, the desire to reliably represent complex ecological processes in finely mapped landscapes necessarily generates a large number of parameters, which are challenging to calibrate with ecological and geographical data that are often noisy, biased, asynchronous and sometimes inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, despite appearing to improve model-data agreement over initial expert opinion estimates. We therefore advocate a combined approach where data-driven calibration and expert opinion are integrated into an iterative Delphi-like process, which simultaneously combines model calibration and credibility assessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable model predictions for ecological systems with expert knowledge gaps and patchy ecological data.
  •  
5.
  • Garibaldi, Lucas A., et al. (författare)
  • Trait matching of flower visitors and crops predicts fruit set better than trait diversity
  • 2015
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 52:6, s. 1436-1444
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editor's Choice
  •  
6.
  • Garratt, Michael P D, et al. (författare)
  • Opportunities to reduce pollination deficits and address production shortfalls in an important insect pollinated crop
  • 2021
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582.
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of 'pollination deficits', where maximum yield is not being achieved due to insufficient pollination, we use an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries as well as compare 'pollinator dependence' across different apple varieties. We found evidence of pollination deficits and in some cases, risks of over-pollination were even apparent where fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others, in terms of avoiding a pollination deficit and crop yield shortfalls due to sub-optimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrate that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help target local management to address deficits although crop variety has a strong influence on the role of pollinators.
  •  
7.
  • Hutchinson, Louise A., et al. (författare)
  • Using ecological and field survey data to establish a national list of the wild bee pollinators of crops
  • 2021
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of wild bees for crop pollination is well established, but less is known about which species contribute to service delivery to inform agricultural management, monitoring and conservation. Using sites in Great Britain as a case study, we use a novel qualitative approach combining ecological information and field survey data to establish a national list of crop pollinating bees for four economically important crops (apple, field bean, oilseed rape and strawberry). A traits data base was used to establish potential pollinators, and combined with field data to identify both dominant crop flower visiting bee species and other species that could be important crop pollinators, but which are not presently sampled in large numbers on crops flowers. Whilst we found evidence that a small number of common, generalist species make a disproportionate contribution to flower visits, many more species were identified as potential pollinators, including rare and specialist species. Furthermore, we found evidence of substantial variation in the bee communities of different crops. Establishing a national list of crop pollinators is important for practitioners and policy makers, allowing targeted management approaches for improved ecosystem services, conservation and species monitoring. Data can be used to make recommendations about how pollinator diversity could be promoted in agricultural landscapes. Our results suggest agri-environment schemes need to support a higher diversity of species than at present, notably of solitary bees. Management would also benefit from targeting specific species to enhance crop pollination services to particular crops. Whilst our study is focused upon Great Britain, our methodology can easily be applied to other countries, crops and groups of pollinating insects.
  •  
8.
  • Kleijn, David, et al. (författare)
  • Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
  •  
9.
  • Mei, Zulin, et al. (författare)
  • Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe
  • 2023
  • Ingår i: Biological Conservation. - 0006-3207 .- 1873-2917. ; 283
  • Tidskriftsartikel (refereegranskat)abstract
    • Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. <17 % of carabid or spider species were classified as dominant, which accounted for >90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that management practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild.
  •  
10.
  • Rader, Romina, et al. (författare)
  • Non-bee insects are important contributors to global crop pollination.
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 113:1, s. 146-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy