SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gasparini Clelia) "

Sökning: WFRF:(Gasparini Clelia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bretman, Amanda, et al. (författare)
  • Systematic approaches to assessing high-temperature limits to fertility in animals
  • 2024
  • Ingår i: Journal of Evolutionary Biology. - 1010-061X .- 1420-9101.
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]). These results present a more pessimistic outlook on the consequences of climate change. However, unlike CTLs, TFL data are limited to Drosophila, and variability in TSF methods poses challenges in predicting species responses to increasing temperature. To address these data and methodological gaps, we propose 3 standardized approaches for assessing thermal impacts on fertility. We focus on adult obligate sexual terrestrial invertebrates but also provide modifications for other animal groups and life-history stages. We first outline a gold-standard protocol for determining TFLs, focussing on the effects of short-term heat shocks and simulating more frequent extreme heat events predicted by climate models. As this approach may be difficult to apply to some organisms, we then provide a standardized TSF protocol. Finally, we provide a framework to quantify fertility loss in response to extreme heat events in nature, given the limitations in laboratory approaches. Applying these standardized approaches across many taxa, similar to CTLs, will allow robust tests of the impact of fertility loss on species responses to increasing temperatures. Graphical AbstractOverview of the systematic methods (A, C, and D) to simultaneously assay lethal limits and thermal fertility limits or (B and E) thermal sensitivity of fertility. These are most easily applied to laboratory settings but can be used for assessing the fertility of wild-caught animals that have been exposed to natural temperatures.
  •  
2.
  • Dougherty, Liam R., et al. (författare)
  • A systematic map of studies testing the relationship between temperature and animal reproduction
  • 2024
  • Ingår i: Ecological Solutions and Evidence. - : John Wiley & Sons. - 2688-8319. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large-scale summaries of the evidence for effect of temperature on reproduction.We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits).Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species.The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non-arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short-term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid-latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled.This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta-analyses, and direct future studies aiming to fill identified gaps.
  •  
3.
  • Gasparini, Clelia, et al. (författare)
  • Sexual selection and ageing : interplay between pre- and post-copulatory traits senescence in the guppy
  • 2019
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 286:1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Traits associated with mating and fertilization success are expected to senesce with age, but limited information is available on their relative rates of senescence. In polyandrous species, male reproductive fitness depends on both mating and fertilization success. Because successful mating is a prerequisite for post-copulatory sexual selection, ejaculate traits are expected to senesce faster than pre-copulatory traits, as precopulatory sexual selection is often deemed to be stronger than post-copulatory sexual selection. This pattern has generally been found in the few empirical studies conducted so far. We tested this prediction in the guppy (Poecilia reticulata), a livebearing fish characterized by intense sperm competition, by comparing the expression of male sexual traits at two ages (four and nine months). Contrary to prediction, we found that post-copulatory traits senesced at a significantly slower rate than pre-copulatory traits. We also looked at whether early investment in those sexual traits affects longevity, and the interaction between sperm age (duration of sperm storage inside the male) and male age. Our results suggest that the relative senescence rate of pre- and post-copulatory sexual traits may vary among species with different mating systems and ecology.
  •  
4.
  • Grueber, Catherine E., et al. (författare)
  • Population demography and heterozygosity-fitness correlations in natural guppy populations : An examination using sexually selected fitness traits
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 26:18, s. 4631-4643
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterozygosity-fitness correlations (HFCs) have been examined in a wide diversity of contexts, and the results are often used to infer the role of inbreeding in natural populations. Although population demography, reflected in population-level genetic parameters such as allelic diversity or identity disequilibrium, is expected to play a role in the emergence and detectability of HFCs, direct comparisons of variation in HFCs across many populations of the same species, with different genetic histories, are rare. Here, we examined the relationship between individual microsatellite heterozygosity and a range of sexually selected traits in 660 male guppies from 22 natural populations in Trinidad. Similar to previous studies, observed HFCs were weak overall. However, variation in HFCs among populations was high for some traits (although these variances were not statistically different from zero). Population-level genetic parameters, specifically genetic diversity levels (number of alleles, observed/expected heterozygosity) and measures of identity disequilibrium (g2 and heterozygosity-heterozygosity correlations), were not associated with variation in population-level HFCs. This latter result indicates that these metrics do not necessarily provide a reliable predictor of HFC effect sizes across populations. Importantly, diversity and identity disequilibrium statistics were not correlated, providing empirical evidence that these metrics capture different essential characteristics of populations. A complex genetic architecture likely underpins multiple fitness traits, including those associated with male fitness, which may have reduced our ability to detect HFCs in guppy populations. Further advances in this field would benefit from additional research to determine the demographic contexts in which HFCs are most likely to occur.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy