SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gastaldello Stefano) "

Sökning: WFRF:(Gastaldello Stefano)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruneau, Anne, et al. (författare)
  • Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification
  • 2024
  • Ingår i: PhytoKeys. - Sofia : Pensoft Publishers. - 1314-2011 .- 1314-2003. ; 240, s. 1-552
  • Tidskriftsartikel (refereegranskat)abstract
    • Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Cera-tonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.
  •  
2.
  • Corpeno Kalamgi, Rebeca, et al. (författare)
  • Mechano-signalling pathways in an experimental intensive critical illness myopathy model.
  • 2016
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 594:15, s. 4371-88
  • Tidskriftsartikel (refereegranskat)abstract
    • KEY POINTS: Using an experimental rat intensive care unit (ICU) model, not limited by early mortality, we have previously shown that passive mechanical loading attenuates the loss of muscle mass and force-generation capacity associated with the ICU intervention. Mitochondrial dynamics have recently been shown to play a more important role in muscle atrophy than previously recognized. In this study we demonstrate that mitochondrial dynamics, as well as mitophagy, is affected by mechanosensing at the transcriptional level, and muscle changes induced by unloading are counteracted by passive mechanical loading. The recently discovered ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that similarly is prevented by passive mechanical loading.ABSTRACT: The complete loss of mechanical stimuli of skeletal muscles, i.e. loss of external strain related to weight bearing and internal strain related to activation of contractile proteins, in mechanically ventilated, deeply sedated and/or pharmacologically paralysed intensive care unit (ICU) patients is an important factor triggering the critical illness myopathy (CIM). Using a unique experimental ICU rat model, mimicking basic ICU conditions, we have recently shown that mechanical silencing is a dominant factor triggering the preferential loss of myosin, muscle atrophy and decreased specific force in fast- and slow-twitch muscles and muscle fibres. The aim of this study is to gain improved understanding of the gene signature and molecular pathways regulating the process of mechanical activation of skeletal muscle that are affected by the ICU condition. We have focused on pathways controlling myofibrillar protein synthesis and degradation, mitochondrial homeostasis and apoptosis. We demonstrate that genes regulating mitochondrial dynamics, as well as mitophagy are induced by mechanical silencing and that these effects are counteracted by passive mechanical loading. In addition, the recently identified ubiquitin ligases Fbxo31 and SMART are induced by mechanical silencing, an induction that is reversed by passive mechanical loading. Thus, mechano-cell signalling events are identified which may play an important role for the improved clinical outcomes reported in response to the early mobilization and physical therapy in immobilized ICU patients.
  •  
3.
  • Heras, Gabriel, et al. (författare)
  • Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification
  • 2019
  • Ingår i: Journal of Molecular Cell Biology. - : Oxford University Press (OUP). - 1674-2788 .- 1759-4685. ; 11:5, s. 356-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The muscle RING-finger protein-1 (MuRF1) is an E3 ubiquitin ligase expressed in skeletal and cardiac muscle tissues and it plays important roles in muscle remodeling. Upregulation of MuRF1 gene transcription participates in skeletal muscle atrophy, on contrary downregulation of protein expression leads to cardiac hypertrophy. MuRF1 gene point mutations have been found to generate protein aggregate myopathies defined as muscle disorder characterized by protein accumulation in muscle fibers. We have discovered that MuRF1 turned out to be also a target for a new post-translational modification arbitrated by conjugation of SUMO1 and it is mediated by the SUMO ligases E2 UBC9 and the E3 PIASγ/4. SUMOylation takes place at lysine 238 localized at the second coiled-coil protein domain that is required for efficient substrate interaction for polyubiquitination. We provided evidence that SUMOylation is essential for MuRF1 nuclear translocation and its mitochondria accumulation is enhanced in hyperglycemic conditions delivering a stabilization of the overall SUMOylated proteins in cultured myocytes. Thus, our findings add this SUMO1 post-translational modification as a new concept to understand muscle disorders related to the defect in MuRF1 activity.
  •  
4.
  • Namuduri, Arvind Venkat, et al. (författare)
  • A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle
  • 2017
  • Ingår i: Molecular & Cellular Proteomics. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 1535-9476 .- 1535-9484. ; 16:6, s. 1081-1097
  • Tidskriftsartikel (refereegranskat)abstract
    • The small ubiquitin-like modifier (SUMO) is as a regulator of many cellular functions by reversible conjugation to a broad number of substrates. Under endogenous or exogenous perturbations, the SUMO network becomes a fine sensor of stress conditions by alterations in the expression level of SUMO enzymes and consequently changing the status of SUMOylated proteins. The diaphragm is the major inspiratory muscle, which is continuously active under physiological conditions, but its structure and function is severely affected when passively displaced for long extents during mechanical ventilation (MV). An iatrogenic condition called Ventilator-Induced Diaphragm Dysfunction (VIDD) is a major cause of failure to wean patients from ventilator support but the molecular mechanisms underlying this dysfunction are not fully understood. Using a unique experimental Intensive Care Unit (ICU) rat model allowing long-term MV, diaphragm muscles were collected in rats control and exposed to controlled MV (CMV) for durations varying between 1 and 10 days. Endogenous SUMOylated diaphragm proteins were identified by mass spectrometry and validated with in vitro SUMOylation systems. Contractile, calcium regulator and mitochondrial proteins were of specific interest due to their putative involvement in VIDD. Differences were observed in the abundance of SUMOylated proteins between glycolytic and oxidative muscle fibers in control animals and high levels of SUMOylated proteins were present in all fibers during CMV. Finally, previously reported VIDD biomarkers and therapeutic targets were also identified in our datasets which may play an important role in response to muscle weakness seen in ICU patients. Data are available via ProteomeXchange with identifier PXD006085.
  •  
5.
  • Salah, Heba, et al. (författare)
  • The chaperone co-inducer BGP-15 alleviates ventilation-induced diaphragm dysfunction
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:350
  • Tidskriftsartikel (refereegranskat)abstract
    • Ventilation-induced diaphragm dysfunction (VIDD) is a marked decline in diaphragm function in response to mechanical ventilation, which has negative consequences for individual patients' quality of life and for the health care system, but specific treatment strategies are still lacking. We used an experimental intensive care unit (ICU) model, allowing time-resolved studies of diaphragm structure and function in response to long-term mechanical ventilation and the effects of a pharmacological intervention (the chaperone co-inducer BGP-15). The marked loss of diaphragm muscle fiber function in response to mechanical ventilation was caused by post-translational modifications (PTMs) of myosin. In a rat model, 10 days of BGP-15 treatment greatly improved diaphragm muscle fiber function (by about 100%), although it did not reverse diaphragm atrophy. The treatment also provided protection from myosin PTMs associated with HSP72 induction and PARP-1 inhibition, resulting in improvement of mitochondrial function and content. Thus, BGP-15 may offer an intervention strategy for reducing VIDD in mechanically ventilated ICU patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Larsson, Lars (3)
Heras, Gabriel (2)
Mi, Jia (2)
Cacciani, Nicola (2)
Akkad, Hazem (1)
Bergquist, Jonas (1)
visa fler...
Shevchenko, Ganna (1)
Ruas, Jorge (1)
Corpeno Kalamgi, Reb ... (1)
Tian, Geng (1)
Fury, Wen (1)
Bai, Yu (1)
Seigler, David S. (1)
Artemenko, Konstanti ... (1)
Hörnaeus, Katarina (1)
Falk, Alexander, Res ... (1)
Ickert-Bond, Stefani ... (1)
Konzer, Anne (1)
Gromada, Jesper (1)
Bruneau, Anne (1)
De Queiroz, Luciano ... (1)
Ringelberg, Jens J. (1)
Borges, Leonardo M. (1)
Bortoluzzi, Roseli L ... (1)
Brown, Gillian K. (1)
Cardoso, Domingos B. ... (1)
Clark, Ruth P. (1)
Conceição, Adilva De ... (1)
Cota, Matheus Martin ... (1)
Demeulenaere, Else (1)
De Stefano, Rodrigo ... (1)
Ebinger, John E. (1)
Ferm, Julia, 1985- (1)
Fonseca-Cortés, Andr ... (1)
Gagnon, Edeline (1)
Grether, Rosaura (1)
Guerra, Ethiéne (1)
Haston, Elspeth (1)
Herendeen, Patrick S ... (1)
Hernández, Héctor M. (1)
Hopkins, Helen C.F. (1)
Huamantupa-Chuquimac ... (1)
Hughes, Colin E. (1)
Iganci, João (1)
Koenen, Erik J.M. (1)
Lewis, Gwilym P. (1)
De Lima, Haroldo Cav ... (1)
Lima, Alexandre Giba ... (1)
Luckow, Melissa (1)
Marazzi, Brigitte (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Karolinska Institutet (4)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy