SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaston Anthony J.) "

Sökning: WFRF:(Gaston Anthony J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Phillips, M. M., et al. (författare)
  • Carnegie Supernova Project-II : Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to z ∼ 0.1
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of similar to 100 Type. Ia supernovae located in the smooth Hubble flow (0.03 less than or similar to z less than or similar to 0.10). Light curves were also obtained of a Physics sample composed of 90 nearby Type. Ia supernovae at z <= 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
  •  
2.
  • Elliott, Kyle H., et al. (författare)
  • Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling
  • 2014
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 83:1, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy expenditure in wild animals can be limited (i) intrinsically by physiological processes that constrain an animal's capacity to use energy, (ii) extrinsically by energy availability in the environment and/or (iii) strategically based on trade-offs between elevated metabolism and survival. Although these factors apply to all individuals within a population, some individuals expend more or less energy than other individuals. To examine the role of an energy ceiling in a species with a high and individually repeatable metabolic rate, we compared energy expenditure of thick-billed murres (Uria lomvia) with and without handicaps during a period of peak energy demand (chick-rearing, N=16). We also compared energy expenditure of unencumbered birds (N=260) across 8years exhibiting contrasting environmental conditions and correlated energy expenditure with fitness (reproductive success and survival). Murres experienced an energy ceiling mediated through behavioural adjustments. Handicapped birds decreased time spent flying/diving and chick-provisioning rates such that overall daily energy expenditure remained unchanged across the two treatments. The energy ceiling did not reflect energy availability or trade-offs with fitness, as energy expenditure was similar across contrasting foraging conditions and was not associated with reduced survival or increased reproductive success. We found partial support for the trade-off hypothesis as older murres, where prospects for future reproduction would be relatively limited, did overcome an energy ceiling to invest more in offspring following handicapping by reducing their own energy reserves. The ceiling therefore appeared to operate at the level of intake (i.e. digestion) rather than expenditure (i.e. thermal constraint, oxidative stress). A meta-analysis comparing responses of breeding animals to handicapping suggests that our results are typical: animals either reduced investment in themselves or in their offspring to remain below an energy ceiling. Across species, whether a handicapped individual invested in its own energy stores or its offspring's growth was not explained by life history (future vs. current reproductive potential). Many breeding animals apparently experience an intrinsic energy ceiling, and increased energy costs lead to a decline in self-maintenance and/or offspring provisioning.
  •  
3.
  • Elliott, Kyle H., et al. (författare)
  • Variation in growth drives the duration of parental care : A test of Ydenberg’s model
  • 2017
  • Ingår i: American Naturalist. - 0003-0147. ; 189:5, s. 526-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The duration of parental care in animals varies widely, from none to lifelong. Such variation is typically thought to represent a trade-off between growth and safety. Seabirds show wide variation in the age at which offspring leave the nest, making them ideal to test the idea that a trade-off between high energy gain at sea and high safety at the nest drives variation in departure age (Ydenberg’s model). To directly test the model assumptions, we attached time-depth recorders to murre parents (fathers [which do all parental care at sea] and mothers; N = 14 of each). Except for the initial mortality experienced by chicks departing from the colony, the mortality rate at sea was similar to the mortality rate at the colony. However, energy gained by the chick per day was ∼2.1 times as high at sea compared with at the colony because the father spent more time foraging, since he no longer needed to spend time commuting to and from the colony. Compared with the mother, the father spent ∼2.6 times as much time diving per day and dived in lower-quality foraging patches. We provide a simple model for optimal departure date based on only (1) the difference in growth rate at sea relative to the colony and (2) the assumption that transition mortality from one life-history stage to the other is size dependent. Apparently, large variation in the duration of parental care can arise simply as a result of variation in energy gain without any trade-off with safety.
  •  
4.
  • Patterson, Allison, et al. (författare)
  • Foraging range scales with colony size in high-latitude seabirds
  • 2022
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32:17, s. 3800-3807
  • Tidskriftsartikel (refereegranskat)abstract
    • Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1, 2, 3, 4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world’s most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole’s halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole’s version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy