SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gaudart J.) "

Search: WFRF:(Gaudart J.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bationo, C. S., et al. (author)
  • Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016–2017
  • 2021
  • In: Scientific Reports. - : Nature Research. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Malaria control and prevention programs are more efficient and cost-effective when they target hotspots or select the best periods of year to implement interventions. This study aimed to identify the spatial distribution of malaria hotspots at the village level in Diébougou health district, Burkina Faso, and to model the temporal dynamics of malaria cases as a function of meteorological conditions and of the distance between villages and health centres (HCs). Case data for 27 villages were collected in 13 HCs. Meteorological data were obtained through remote sensing. Two synthetic meteorological indicators (SMIs) were created to summarize meteorological variables. Spatial hotspots were detected using the Kulldorf scanning method. A General Additive Model was used to determine the time lag between cases and SMIs and to evaluate the effect of SMIs and distance to HC on the temporal evolution of malaria cases. The multivariate model was fitted with data from the epidemic year to predict the number of cases in the following outbreak. Overall, the incidence rate in the area was 429.13 cases per 1000 person-year with important spatial and temporal heterogeneities. Four spatial hotspots, involving 7 of the 27 villages, were detected, for an incidence rate of 854.02 cases per 1000 person-year. The hotspot with the highest risk (relative risk = 4.06) consisted of a single village, with an incidence rate of 1750.75 cases per 1000 person-years. The multivariate analysis found greater variability in incidence between HCs than between villages linked to the same HC. The time lag that generated the better predictions of cases was 9 weeks for SMI1 (positively correlated with precipitation variables) and 16 weeks for SMI2 (positively correlated with temperature variables. The prediction followed the overall pattern of the time series of reported cases and predicted the onset of the following outbreak with a precision of less than 3 weeks. This analysis of malaria cases in Diébougou health district, Burkina Faso, provides a powerful prospective method for identifying and predicting high-risk areas and high-transmission periods that could be targeted in future malaria control and prevention campaigns.
  •  
2.
  • Bengtsson, L, et al. (author)
  • Using mobile phone data to predict the spatial spread of cholera
  • 2015
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5, s. 8923-
  • Journal article (peer-reviewed)abstract
    • Effective response to infectious disease epidemics requires focused control measures in areas predicted to be at high risk of new outbreaks. We aimed to test whether mobile operator data could predict the early spatial evolution of the 2010 Haiti cholera epidemic. Daily case data were analysed for 78 study areas from October 16 to December 16, 2010. Movements of 2.9 million anonymous mobile phone SIM cards were used to create a national mobility network. Two gravity models of population mobility were implemented for comparison. Both were optimized based on the complete retrospective epidemic data, available only after the end of the epidemic spread. Risk of an area experiencing an outbreak within seven days showed strong dose-response relationship with the mobile phone-based infectious pressure estimates. The mobile phone-based model performed better (AUC 0.79) than the retrospectively optimized gravity models (AUC 0.66 and 0.74, respectively). Infectious pressure at outbreak onset was significantly correlated with reported cholera cases during the first ten days of the epidemic (p < 0.05). Mobile operator data is a highly promising data source for improving preparedness and response efforts during cholera outbreaks. Findings may be particularly important for containment efforts of emerging infectious diseases, including high-mortality influenza strains.
  •  
3.
  • Piarroux, Renaud, et al. (author)
  • Mathematical models for predicting human mobility in the context of infectious disease spread: introducing the impedance model
  • 2017
  • In: International Journal of Health Geographics. - : BMC (part of Springer Nature). - 1476-072X. ; 16:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view