SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gautam Pradeep) "

Sökning: WFRF:(Gautam Pradeep)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhambri, Aksheev, et al. (författare)
  • Large scale changes in the transcriptome of Eisenia fetida during regeneration
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earthworms show a wide spectrum of regenerative potential with certain species like Eisenia fetida capable of regenerating more than two-thirds of their body while other closely related species, such as Paranais litoralis seem to have lost this ability. Earthworms belong to the phylum Annelida, in which the genomes of the marine oligochaete Capitella telata and the freshwater leech Helobdella robusta have been sequenced and studied. Herein, we report the transcriptomic changes in Eisenia fetida (Indian isolate) during regeneration. Following injury, E. fetida regenerates the posterior segments in a time spanning several weeks. We analyzed gene expression changes both in the newly regenerating cells and in the adjacent tissue, at early (15days post amputation), intermediate (20days post amputation) and late (30 days post amputation) by RNAseq based de novo assembly and comparison of transcriptomes. We also generated a draft genome sequence of this terrestrial red worm using short reads and mate-pair reads. An in-depth analysis of the miRNome of the worm showed that many miRNA gene families have undergone extensive duplications. Sox4, a master regulator of TGF-beta mediated epithelial-mesenchymal transition was induced in the newly regenerated tissue. Genes for several proteins such as sialidases and neurotrophins were identified amongst the differentially expressed transcripts. The regeneration of the ventral nerve cord was also accompanied by the induction of nerve growth factor and neurofilament genes. We identified 315 novel differentially expressed transcripts in the transcriptome, that have no homolog in any other species. Surprisingly, 82% of these novel differentially expressed transcripts showed poor potential for coding proteins, suggesting that novel ncRNAs may play a critical role in regeneration of earthworm.
  •  
2.
  • Rai, Nilesh, et al. (författare)
  • Fungal Endophytes : an Accessible Source of Bioactive Compounds with Potential Anticancer Activity
  • 2022
  • Ingår i: Applied Biochemistry and Biotechnology. - : Springer. - 0273-2289 .- 1559-0291. ; 194, s. 3296-3319
  • Forskningsöversikt (refereegranskat)abstract
    • Endophytes either be bacteria, fungi, or actinomycetes colonize inside the tissue of host plants without showing any immediate negative effects on them. Among numerous natural alternative sources, fungal endophytes produce a wide range of structurally diverse bioactive metabolites including anticancer compounds. Considering the production of bioactive compounds in low quantity, genetic and physicochemical modification of the fungal endophytes is performed for the enhanced production of bioactive compounds. Presently, for the treatment of cancer, chemotherapy is majorly used, but the side effects of chemotherapy are of prime concern in clinical practices. Also, the drug-resistant properties of carcinoma cells, lack of cancer cells-specific medicine, and the side effects of drugs are the biggest obstacles in cancer treatment. The interminable requirement of potential drugs has encouraged researchers to seek alternatives to find novel bioactive compounds, and fungal endophytes seem to be a probable target for the discovery of anticancer drugs. The present review focuses a comprehensive literature on the major fungal endophyte-derived bioactive compounds which are presently been used for the management of cancer, biotic factors influencing the production of bioactive compounds and about the challenges in the field of fungal endophyte research.
  •  
3.
  • Verma, Swati, et al. (författare)
  • Cloning, Characterization, and Structural Modeling of an Extremophilic Bacterial Lipase Isolated from Saline Habitats of the Thar Desert
  • 2020
  • Ingår i: Applied Biochemistry and Biotechnology. - : Springer. - 0273-2289 .- 1559-0291. ; 192, s. 557-572
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipases have a characteristic folding pattern of α/β-hydrolase with mostly parallel β-sheets, flanked on both sides by α-helixes in the structure. The active site is formed by a catalytic triad (serine, aspartic/glutamic acid, and histidine), which is highly conserved. In this study, we have used an integrated experimental and computational approach to identify the extremophilic microbial lipases from the saline habitats of the Thar Desert of Rajasthan. Lipase-producing bacteria were screened and a few samples showed significant lipase activity in both quantitative and qualitative experiments. 16S rRNA sequence analysis of the isolate F1 showed that its sequence is quite similar to that of Bacillus licheniformis and Bacillus haynesii, indicating that this isolate belongs to a new subspecies of Bacillus. The isolate F7 showed maximum sequence identity with Bacillus tequilensis strain 10b. The isolate F7 sequence analysis provided a clear testimony that it can be a new strain of Bacillus tequilensis. The F7 lipase exhibited optimal activity at 60 °C and pH 9. Structural modeling of the F7 lipase revealed that it has a highly conserved alpha/beta hydrolase fold at the sequence and structural level except for the N-terminal region. Interestingly, residue Glu128 was different from the template structure and showed the hydrogen bonding between the side chain of Glu128 and side chains of Asn35 and Gln152 amino acids. Besides, this amino acid also showed salt bridge interaction between Glu128--Lys101. These interactions may be assisting in preserving the stability and activity of lipase at high temperatures and in alkaline pH conditions. The information gathered from this investigation will guide in the rational designing of new more potential extremophilic lipase.
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy