SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gautier S) "

Sökning: WFRF:(Gautier S)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
3.
  • Mousis, O., et al. (författare)
  • Scientific rationale for Saturn's in situ exploration
  • 2014
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 29-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
  •  
4.
  • Plasman, M., et al. (författare)
  • Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa
  • 2017
  • Ingår i: Geophysical Journal International. - : OXFORD UNIV PRESS. - 0956-540X .- 1365-246X. ; 210:1, s. 465-481
  • Tidskriftsartikel (refereegranskat)abstract
    • Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 x 200 km(2) area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a midlithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho butwith a more slanting direction (NE-SW) compared to theNS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding, possibly favouring here deformation process such as grain-boundary sliding (EAGBS) due to lithospheric strain. Its geometry might have been controlled by inherited lithospheric fabrics and heterogeneous upper mantle structure. We evidence that crustal and mantle magmatic processes represent first order mechanisms to ease and locate the deformation during the first stage of a cratonic lithospheric breakup.
  •  
5.
  • Tiberi, C., et al. (författare)
  • Lithospheric modification by extension and magmatism at the craton-orogenic boundary : North Tanzania Divergence, East Africa
  • 2019
  • Ingår i: Geophysical Journal International. - : OXFORD UNIV PRESS. - 0956-540X .- 1365-246X. ; 216:3, s. 1693-1710
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a joint analysis of newly acquired gravity and teleseismic data in the North Tanzanian Divergence, where the lithospheric break-up is at its earliest stage. The impact of a mantle upwelling in more mature branches of the East African Rift has been extensively studied at a lithospheric scale. However, few studies have been completed that relate the deep-seated mantle anomaly detected in broad regional seismic tomography with the surface deformation observed in the thick Archaean Pan-African suture zone located in North Tanzania. Our joint inversion closes the gap between local and regional geophysical studies, providing velocity and density structures from the surface down to ca. 250 km depth with new details. Our results support the idea of a broad mantle upwelling rising up to the lithosphere and creating a thermal modification along its path. However, our study clearly presents an increasing amplitude of the associated anomaly both in velocity and density above 200 km depth, which cannot be solely explained by a temperature rise. We infer from our images the combined impact of melt (2-3 per cent), composition and hydration that accompany the modification of a thick heterogenous cratonic lithosphere are a response to the hot mantle rising. The detailed images we obtained in density and velocity assert that Archaean and Proterozoic units interact with the mantle upwelling to restrict the lithosphere modifications within the Magadi-Natron-Manyara rift arm. The composition and hydration variations associated with those units equilibrate the thermal erosion of the craton root and allow for its stability between 100 and 200 km depth. Above 80 km depth, the crustal part is strongly affected by intruding bodies (melt and gas) which produces large negative anomalies in both velocity and density beneath the main magmatic centres. In addition to the global impact of a superplume, the velocity and density anomaly pattern suggests a 3-D distribution of the crust and mantle lithospheric stretching, which is likely to be controlled by inherited fabrics and enhanced by lateral compositional and hydration variations at the Tanzanian craton-orogenic belt boundary.
  •  
6.
  •  
7.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
8.
  •  
9.
  •  
10.
  • Chalupsky, J, et al. (författare)
  • Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses
  • 2009
  • Ingår i: Optics Express. - 1094-4087. ; 17:1, s. 208-217
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of single-shot soft x-ray laser induced desorption occurring below the ablation threshold in a thin layer of poly ( methyl methacrylate) - PMMA. Irradiated by the focused beam from the Free-electron LASer in Hamburg ( FLASH) at 21.7nm, the samples have been investigated by atomic-force microscope (AFM) enabling the visualization of mild surface modifications caused by the desorption. A model describing non-thermal desorption and ablation has been developed and used to analyze single-shot imprints in PMMA. An intermediate regime of materials removal has been found, confirming model predictions. We also report below-threshold multiple-shot desorption of PMMA induced by high-order harmonics (HOH) at 32nm. Short-time exposure imprints provide sufficient information about transverse beam profile in HOH's tight focus whereas long-time exposed PMMA exhibits radiation-initiated surface hardening making the beam profile measurement infeasible. (C) 2008 Optical Society of America
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy