SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ge Tida) "

Sökning: WFRF:(Ge Tida)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Guan, et al. (författare)
  • Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil
  • 2022
  • Ingår i: Land Degradation and Development. - : Wiley. - 1099-145X .- 1085-3278. ; 33:8, s. 1193-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • Root exudates can significantly modify microbial activity and soil organic matter (SOM) mineralization. However, how root exudates and their C/N stoichiometric ratios control paddy soil C mineralization is poorly understood. This study used a mixture of glucose, oxalic acid, and alanine as root exudate mimics for three C/N stoichiometric ratios (CN6, CN10, and CN80) to explore the underlying mechanisms involved in SOM mineralization. The input of root exudates enhanced CO2 emissions by 1.8–2.3-fold that of soil with only C additions (C-only). Artificial root exudates with low C/N ratios (CN6 and CN10) increased the metabolic quotient (qCO2) by 12% over those with higher stoichiometric ratios (CN80 and C-only), suggesting a relatively high energy demand for microorganisms to acquire organic N from SOM by increasing N-hydrolase production. The increase of stoichiometric ratios of C- to N-hydrolase (β-1,4-glucosidase to β-1,4-N-acetyl glucosaminidase) promoted SOM degradation compared to those involved in organic C- and N- degradation, which had a significant positive correlation with qCO2. The stoichiometric ratios of microbial biomass (MBC/MBN) were positively correlated with C use efficiency, indicating root exudates with higher C/N ratios provide an undersupply of N for microorganisms that trigger the release of N-degrading extracellular enzymes. Our findings showed that the C/N stoichiometry of root exudates controlled SOM mineralization by affecting the specific response of the microbial biomass through the activity of C- and N-releasing extracellular enzymes to adjust the microbial C/N ratio.
  •  
2.
  • Fan, Lichao, et al. (författare)
  • Active metabolic pathways of anaerobic methane oxidation in paddy soils
  • 2021
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 156
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic oxidation of methane (AOM) is a globally important CH4 sink. However, the AOM pathways in paddy soils, the largest agricultural source of methane emissions (31 Mio tons per year) are not yet well described. Here, a combination of C-13 isotope tracer, phospholipid fatty acids (PLFA) analyses, and microbial community analysis was used to identify AOM pathways in fertilized (pig manure, biochar, NPK, and the control) paddy soils amended with alternative electron acceptors (AEAs) (NO3-, Fe3+, SO42-, humic acids, and the reference without AEAs addition). After 84 days of anaerobic incubation, the microbial co-occurrence network got tightened and became more complex relative to unincubated samples. Fertilization and AEAs addition led to a strong divergence of the microbial community structure as indicated by abundances of AOM-related microbiota and C-13 incorporation into microbial PLFA, thus suggesting an environmental niche differentiation of AOM-involved microorganisms. Comparative analyses revealed a set of major and minor AOM pathways with synergistic relations to complementary anaerobic microbial groups. NO3--driven AOM, performed by members of the candidate group ANME-2d, was the major AOM pathway. Minor AOM pathways involved NO2- reduction by NC10, reduction of humic acids and Fe3+ by Geobacter species, and SO42- reduction by sulfate-reducing bacteria linked with anaerobic methanotrophs. As identified by the network analysis, these active AOM pathways compensated a fraction of CH4 produced during ongoing methanogenesis. From a broader ecological perspective, nitrogendriven AOM will become a more important methane sink in the future with the increases of nitrogen fertilization and deposition.
  •  
3.
  • Li, Yuhong, et al. (författare)
  • Contrasting response of organic carbon mineralisation to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil
  • 2021
  • Ingår i: Biology and Fertility of Soils. - : Springer Science and Business Media LLC. - 1432-0789 .- 0178-2762. ; 57:1, s. 117-129
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to what is observed in aerobic uplands, microbial biomass and the presence of electron acceptors, such as iron oxides, play a crucial role in regulating soil organic C (SOC) mineralisation in paddy soils. However, the related underlying mechanisms are still poorly explored. We conducted an anaerobic incubation study to investigate changes in CO2 emissions from SOC and acetate (13C-labeleld) in response to iron oxide (ferrihydrite and goethite) addition in chloroform-fumigated and unfumigated paddy soils. The iron oxides, as electron acceptors, increased CO2 emissions from SOC with stronger impact under ferrihydrite than goethite addition. However, the acetate addition, as a preferable C source for reducing microbes, decreased SOC mineralisation and caused a negative priming effect. CO2 emission from both acetate and SOC was affected by microbial biomass change. In the acetate-treated soil, goethite in the fumigated soil (i.e. high microbial biomass) increased CO2 emissions from acetate, providing electron acceptors, and decreased CO2 emissions from SOC. Ferrihydrite accepted electrons and adsorbed acetate, resulting in a slight decline in CO2 emission from acetate. However, in the fumigated soil (i.e. low microbial biomass), both iron oxide additions reduced CO2 emissions from acetate and SOC and likely the dominant role of both iron oxides shifted from being electron acceptors to being adsorbents, thus limiting acetate accessibility to microorganisms. The results suggest that microbial biomass is a key driver in shifting the effects of iron oxides on organic C mineralisation in anaerobic paddy soils.
  •  
4.
  • Li, Yuhong, et al. (författare)
  • Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils
  • 2021
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; , s. 108106-108106
  • Tidskriftsartikel (refereegranskat)abstract
    • Rice paddy agro-ecosystems play an important role in global carbon (C) sequestration. Because of flooding management, paddy soil experience periodical changes in oxygen availability, which may make soil organic carbon (SOC) mineralisation unique as compared to upland or other wetland ecosystems. However, at present, information about the relevant mechanisms involved in paddy SOC mineralisation is limited and unclear. We selected three paddy soils with variable iron (Fe) contents, which were either fumigated with chloroform (to reduce microbial biomass) or remained un-fumigated. Soils were incubated for 78 days in one of three treatments: alternating nonflooded–flooded (NF: moist for 0–30 days (oxygen-abundant) and flooded for 31–78 days (oxygen-limited)), continuously flooded (CF: oxygen-limited), and continuously anaerobically flooded (AF: oxygen-depleted). Fumigation reduced the microbial biomass C by more than 70%. Except for the nonflooded period in the NF treatment, the SOC mineralisation rate, at the late stage of each treatment, was significantly lower in the fumigated than in the un-fumigated soil. A multiple regressions showed that a reduction in dissolved organic C contents over time contributed to the cumulative SOC mineralisation only during the nonflooded period in the NF treatment. Furthermore, the labile C pool size was smaller in the AF treatment relative to the other treatments. These imply that dissolved substrates in oxygen-depleted paddy soil were of greater recalcitrance, most likely due to thermodynamic reasons. SOC mineralisation correlated with changes in the redox potential and the Fe2+ contents in the CF and AF treatments only. This indicates that under oxygen-limited and -depleted conditions, Fe played a significant role as an electron acceptor during SOC mineralisation. Correlation and linear regression analyses also suggest that Fe influenced dissolved organic C contents, and hydrolase and oxidative activities. Our findings show that SOC bioavailability is a rate-limiting factor for SOC mineralisation, but only under oxygen-abundant conditions. However, under oxygen-limited or -depleted conditions, microbial biomass, the recalcitrance of organic C compounds, and the availability of electron acceptors are key regulators in determining the intensity and rate of SOC mineralisation.
  •  
5.
  • Liu, Qiong, et al. (författare)
  • Vertical and horizontal shifts in the microbial community structure of paddy soil under long-term fertilization regimes
  • 2022
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 169
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge remains limited on how the structure of microbial community in paddy soils changes in relation to different types of fertilizers with same amount of nutrients. Thus, here, soil samples were collected at 0–10, 10–20, 20–30, and 30–40 cm depths from a paddy field subjected to four long-term fertilization treatments (no fertilization, mineral fertilization, mineral fertilization combined with rice straw, and chicken manure) and analyzed for microbial biomass and community composition. In unfertilized soils, microbial biomass decreased from 0 to 40 cm (with actinomycetes < gram-positive (G+) bacteria < gram-negative (G? ) bacteria < fungi). This ordering was retained after fertilization, but the decline with depth was less pronounced. Both mineral and mineral plus organic fertilization increased the biomass of G+ bacteria compared to G? bacteria (22.7–56.2% increase) and actinomycetes (14.8–52.5% increase). Thus, over the long term, G+ bacteria benefited the most from mineral fertilizer than the other microbial groups. The partial replacement of mineral fertilizer with manure primarily enhanced the abundance of G+ bacteria at 0–30 cm soil depth, whereas replacement with straw enhanced the abundance of fungi at 10–20 cm soil depth. Our findings demonstrate that the structure of the microbial community is strongly impacted by long-term fertilization, independent of fertilizer type.
  •  
6.
  • Liu, Yuhuai, et al. (författare)
  • Effects of root exudate stoichiometry on CO2 emission from paddy soil
  • 2020
  • Ingår i: European Journal of Soil Biology. - : Elsevier BV. - 1164-5563 .- 1778-3615. ; 101
  • Tidskriftsartikel (refereegranskat)abstract
    • Root exudates are a labile source of carbon (C) for microorganisms that can lead to increased CO2 emission. Root exudates can vary in C:N stoichiometric ratio and their impact on microbially driven soil organic matter (SOM) turnover in paddy soils still remains unclear. The objective was to explore the underlying mechanisms involved in SOM decomposition due to root exudate (artificial) addition with three different C:N ratios (10, 20, and 40) during 45 days incubation. Different root exudates C:N ratios were obtained by adding mineral N and exudate components (glucose, oxalic acid, and glutamate) to paddy soil. N-only addition decreased dissolved organic C to limit CO2 emissions, which is an indicative of C sequestration. Conversely, simulated C:N stoichiometric ratios of root exudates significantly increased both microbial activity and metabolism without altering the microbial biomass C:N ratio. However, soil available dissolved organic C to NH4+ ratio decreased by exudates addition. The stoichiometric ratio of key C and N compound degrading enzymes activities increased only with C:N = 10 and remained unchanged with exudates C:N = 20 and 40. The qCO2 values increased with decreasing N-containing compounds in root exudates (i.e. highest CO2 emission was observed under C:N = 40 exudates addition). The results suggest that increasing exudates C:N ratio intensify CO2 emission due to high microbial N demand. Overall result show that root exudates C:N ratio and soil available N co-regulate on CO2 emission, which was controlled by microbial and potential extracellular enzyme activities.
  •  
7.
  • Liu, Yuhuai, et al. (författare)
  • Microplastics in soil can increase nutrient uptake by wheat
  • 2022
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894. ; 438
  • Tidskriftsartikel (refereegranskat)abstract
    • Microplastics can perturb microbial nutrient-mining strategies. However, the mechanism by which microplastics affect the resource-acquisition strategies of crops in agricultural systems remains unknown. The nutrient-acquisition potential of crops and microbes was investigated under treatments with two common microplastics (polyethylene [PE] and polyvinyl chloride [PVC]) at 0%, 1%, and 5% (w/w). Different root resource-acquisition strategies disturbed microbial nutrient turnover in the rhizosphere in response to microplastic addition. Specifically, the β-1,4-glucosidase (BG) hotspot expanded, whereas the rhizosphere expansion of BG activity decreased. A decrease of less than PE1% (w/w) and an expansion of less than PE5% (w/w) in the 1,4-N-acetyl-glucosaminidase (NAG) hotspot with wider rhizosphere expansion of NAG activity indicated that higher doses of PE allow roots to uptake additional N. The phosphomonoesterase (PHOS) hotspot decreased in PE1% (w/w) and expanded in PE5% (w/w), but rhizosphere expansion did not change under PE treatments. However, both NAG and PHOS hotspots expanded with decreasing rhizosphere expansion under PVC treatments, indicating that PVC limits the utilization of available N and P, forcing the crop to obtain nutrients from the narrow root zone. These results indicate that adding PE microplastics increases the demand for and consumption of NH4+-N and NO3--N by wheat.
  •  
8.
  • Liu, Yuhuai, et al. (författare)
  • Stoichiometric theory shapes enzyme kinetics in paddy bulk soil but not in rhizosphere soil
  • 2022
  • Ingår i: Land Degradation and Development. - : Wiley. - 1099-145X .- 1085-3278. ; 33:2, s. 246-256
  • Tidskriftsartikel (refereegranskat)abstract
    • The available carbon (C) to phosphorus (P) ratio in soil is regulated by extracellular hydrolases for C and P acquisition by microbes and plants. However, the stoichiometric relationship between acquiring C and P in paddy rhizosphere and bulk soils remains unclear. The objective was to explore the underlying mechanisms of C and P acquisition stoichiometry in rhizosphere and bulk soils in response to P fertilization and cellulose addition. Amendment with either cellulose or P separately caused a significant increase in the maximal velocity (Vmax) of C acquisition enzymes (β-1,4-glucosidase and β-cellobiohydrolase) but decreased that of P acquisition enzymes (acid and alkaline phosphomonoesterases) in bulk soil. In contrast, lower Vmax values of C and P acquisition enzymes were observed in rhizosphere soil than in bulk soil. The co-application of cellulose and P increased the Vmax of P acquisition enzymes in rhizosphere soil but decreased that of only alkaline phosphomonoesterase in bulk soil. Results show that P availability and labile-C content co-regulated the P/C acquisition ratio, and two inverse linear relationships were observed. Specifically, the P/C acquisition ratio was negatively related to both the dissolved organic C/Olsen-P ratio and the microbial biomass C/P ratio in rhizosphere soil. However, the P/C acquisition ratio was positively related to both the dissolved organic C/Olsen-P ratio and the microbial biomass C/P ratio in bulk soil. Overall, microbes mineralized less organic P to acquire P in paddy soil rhizosphere (i.e. containing higher labile-C) than in bulk soil (i.e. having lower labile-C contents).
  •  
9.
  • Tong, Yaoyao, et al. (författare)
  • Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere
  • 2023
  • Ingår i: Soil Ecology Letters. - : Springer Science and Business Media LLC. - 2662-2289 .- 2662-2297. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Microplastics provide a new ecological niche for microorganisms, and the accumulation levels of microplastics (MPs) in terrestrial ecosystems are higher than those in marine ecosystems. Here, we applied the zymography to investigate how MPs — polyethylene [PE], and polyvinyl chloride [PVC]) at two levels (0.01% and 1% soil weight) impacted the spatial distribution of soil hydrolases, nutrient availability, and rice growth in paddy soil. MPs increased the above-ground biomass by 13.0%–15.5% and decreased the below-ground biomass by 8.0%–15.1%. Addition of 0.01% and 1% MPs reduced soil NH4+ content by 18.3%–63.2% and 52.2%–80.2%, respectively. The average activities of N- and P-hydrolases increased by 0.8%–4.8% and 1.9%–6.3% with addition of MPs, respectively. The nutrient uptake by rice plants and the enzyme activities in hotspots increased with MP content in soil. The accumulation of MPs in paddy soil could provide an ecological niche that facilitates microbial survival, alters the spatial distribution of soil hydrolases, and decreases nutrient availability. [Figure not available: see fulltext.].
  •  
10.
  • Wang, Dongdong, et al. (författare)
  • Split N and P addition decreases straw mineralization and the priming effect of a paddy soil : a 100-day incubation experiment
  • 2019
  • Ingår i: Biology and Fertility of Soils. - : Springer Science and Business Media LLC. - 0178-2762 .- 1432-0789. ; 55:7, s. 701-712
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of mineral fertilization and its application pattern on microbial activity and the subsequent CO2 and CH4 emissions arising from soil organic matter (SOM) or added substrate remains unclear. We quantified the decomposition of 13C-labeled straw and the priming effect (PE) governed by the N and P fertilizer application pattern during a 100-day experiment in a flooded soil. Straw addition increased the total CO2 and CH4 emissions. Straw mineralization increased by 30% and decreased by 19% after full and split NP application, respectively, compared with only straw addition. However, application of NP fertilization (full or split) inhibited straw-derived CH4 emissions compared with only straw addition. SOM decomposition was increased by straw addition, yielding a positive PE for CO2 emission. The application of split NP fertilization along with straw addition improved microbial activity, yielding the highest positive PE for CO2 emission. In contrast, compared with the control (no addition), split NP application decreased the positive PE for CH4 emission. Therefore, the straw-C-derived total CO2 equivalent emission was decreased by split NP application. These results were mainly attributable to the increased Olsen P, microbial biomass, enzyme activity, and straw-derived C microbial use efficiency of split NP application, which negatively affected the PE for CH4 emission; this was supported by the results of standardized total effects determined from structural equation models. Overall, compared with full application, split NP fertilizer application significantly decreased the straw-C mineralization rate and PE for CH4 emission, thereby mitigating greenhouse gas emission and SOM storage in paddy soil.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy