SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Geer Alan J.) "

Sökning: WFRF:(Geer Alan J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jung, Christian, et al. (författare)
  • A comparison of very old patients admitted to intensive care unit after acute versus elective surgery or intervention
  • 2019
  • Ingår i: Journal of critical care. - : W B SAUNDERS CO-ELSEVIER INC. - 0883-9441 .- 1557-8615. ; 52, s. 141-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to evaluate differences in outcome between patients admitted to intensive care unit (ICU) after elective versus acute surgery in a multinational cohort of very old patients (80 years; VIP). Predictors of mortality, with special emphasis on frailty, were assessed.Methods: In total, 5063 VIPs were induded in this analysis, 922 were admitted after elective surgery or intervention, 4141 acutely, with 402 after acute surgery. Differences were calculated using Mann-Whitney-U test and Wilcoxon test. Univariate and multivariable logistic regression were used to assess associations with mortality.Results: Compared patients admitted after acute surgery, patients admitted after elective surgery suffered less often from frailty as defined as CFS (28% vs 46%; p < 0.001), evidenced lower SOFA scores (4 +/- 5 vs 7 +/- 7; p < 0.001). Presence of frailty (CFS >4) was associated with significantly increased mortality both in elective surgery patients (7% vs 12%; p = 0.01), in acute surgery (7% vs 12%; p = 0.02).Conclusions: VIPs admitted to ICU after elective surgery evidenced favorable outcome over patients after acute surgery even after correction for relevant confounders. Frailty might be used to guide clinicians in risk stratification in both patients admitted after elective and acute surgery. 
  •  
2.
  • Barlakas, Vasileios, 1986, et al. (författare)
  • Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:5, s. 3427-3447
  • Forskningsöversikt (refereegranskat)abstract
    • Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances under all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization-the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10-15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V and H channels, which is quantified by the polarization ratio. Using dual-polarization observations from the Global Precipitation Mission microwave imager (GMI), suitable values for were found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with a broadly neutral impact on the forecast but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders and at frequencies above 183.0 GHz where the polarization can be even stronger.
  •  
3.
  • Barlakas, Vasileios, 1986, et al. (författare)
  • On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier BV. - 0022-4073. ; 283
  • Tidskriftsartikel (refereegranskat)abstract
    • With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.
  •  
4.
  • Geer, Alan J., et al. (författare)
  • Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:12, s. 7497-7526
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite observations of radiation in the microwave and sub-millimetre spectral regions (broadly from 1 to 1000 GHz) can have strong sensitivity to cloud and precipitation particles in the atmosphere. These particles (known as hydrometeors) scatter, absorb, and emit radiation according to their mass, composition, shape, internal structure, and orientation. Hence, microwave and sub-millimetre observations have applications including weather forecasting, geophysical retrievals and model validation. To simulate these observations requires a scattering-capable radiative transfer model and an estimate of the bulk optical properties of the hydrometeors. This article describes the module used to integrate single-particle optical properties over a particle size distribution (PSD) to provide bulk optical properties for the Radiative Transfer for TOVS microwave and sub-millimetre scattering code, RTTOV-SCATT, a widely used fast model. Bulk optical properties can be derived from a range of particle models including Mie spheres (liquid and frozen) and non-spherical ice habits from the Liu and Atmospheric Radiative Transfer Simulator (ARTS) databases, which include pristine crystals, aggregates, and hail. The effects of different PSD and particle options on simulated brightness temperatures are explored, based on an analytical two-stream solution for a homogeneous cloud slab. The hydrometeor scattering "spectrum" below 1000 GHz is described, along with its sensitivities to particle composition (liquid or ice), size and shape. The optical behaviour of frozen particles changes in the frequencies above 200 GHz, moving towards an optically thick and emission-dominated regime more familiar from the infrared. This region is little explored but will soon be covered by the Ice Cloud Imager (ICI).
  •  
5.
  •  
6.
  •  
7.
  • Moradi, I., et al. (författare)
  • Implementation of a Discrete Dipole Approximation Scattering Database Into Community Radiative Transfer Model
  • 2022
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 127:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The Community Radiative Transfer Model (CRTM) is a fast model that requires bulk optical properties of hydrometeors in the form of lookup tables to simulate all-sky satellite radiances. Current cloud scattering lookup tables of CRTM were generated using the Mie-Lorenz theory thus assuming spherical shapes for all frozen habits, while actual clouds contain frozen hydrometeors with different shapes. The Discrete Dipole Approximation (DDA) technique is an effective technique for simulating the optical properties of non-spherical hydrometeors in the microwave region. This paper discusses the implementation and validation of a comprehensive DDA cloud scattering database into CRTM for the microwave frequencies. The original DDA database assumes total random orientation in the calculation of single scattering properties. The mass scattering parameters required by CRTM were then computed from single scattering properties and water content dependent particle size distributions. The new lookup tables eliminate the requirement for providing the effective radius as input to CRTM by using the cloud water content for the mass dimension. A collocated dataset of short-term forecasts from Integrated Forecast System of the European Center for Medium-Range Weather Forecasts and satellite microwave data was used for the evaluation of results. The results overall showed that the DDA lookup tables, in comparison with the Mie tables, greatly reduce the differences among simulated and observed values. The Mie lookup tables especially introduce excessive scattering for the channels operating below 90 GHz and low scattering for the channels above 90 GHz.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy