SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Geerlings Mirjam I) "

Sökning: WFRF:(Geerlings Mirjam I)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Erausquin, Gabriel A, et al. (författare)
  • Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium.
  • 2022
  • Ingår i: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term.This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions.Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe.The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection.The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
  •  
2.
  • van Veluw, Susanne J, et al. (författare)
  • Hippocampal T2 hyperintensities on 7 Tesla MRI
  • 2013
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 3, s. 196-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal focal T2 hyperintensities (HT2Hs), also referred to as hippocampal sulcal cavities, are a common finding on Magnetic Resonance (MR) images. There is uncertainty about their etiology and clinical significance. In this study we aimed to describe these HT2Hs in more detail using high resolution 7 Tesla MR imaging, addressing 1) the MR signal characteristics of HT2Hs, 2) their occurrence frequency, 3) their location within the hippocampus, and 4) their relation with age. We also performed an explorative post-mortem study to examine the histology of HT2Hs. Fifty-eight persons without a history of invalidating neurological or psychiatric disease (mean age 64 ± 8 years; range 43-78 years), recruited through their general practitioners, were included in this study. They all underwent 7 Tesla MRI, including a T1, T2, and FLAIR image. MR signal characteristics of the HT2Hs were assessed on these images by two raters. Also, the location and number of the HT2Hs were assessed. In addition, four formalin-fixed brain slices from two subjects were scanned overnight. HT2Hs identified in these slices were subjected to histopathological analysis. HT2Hs were present in 97% of the subjects (median number per person 10; range 0-20). All HT2Hs detected on the T2 sequence were hypointense on T1 weighted images. Of all HT2Hs, 94% was hypointense and 6% hyperintense on FLAIR. FLAIR hypointense HT2Hs were all located in the vestigial sulcus of the hippocampus, FLAIR hyperintense HT2Hs in the hippocampal sulcus or the gray matter. Post-mortem MRI and histopathological analysis suggested that the hypointense HT2Hs on FLAIR were cavities filled with cerebrospinal fluid. A hyperintense HT2H on FLAIR proved to be a microinfarct upon microscopy. In conclusion, hippocampal T2Hs are extremely common and unrelated to age. They can be divided into two types (hypo- and hyperintense on FLAIR), probably with different etiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy