SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gehlot B. K.) "

Sökning: WFRF:(Gehlot B. K.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Patil, A. H., et al. (författare)
  • Upper Limits on the 21cm Epoch of Reionization Power Spectrum from One Night with LOFAR
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 838:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z = 7.910.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero Delta(2)(I)=(56 +/- 13 mK)(2) (1-sigma) excess variance and a best 2-sigma upper limit of Delta(2)(21) < (79.6 mK)(2) at k = 0.053 h cMpc(-1) in the range z = 9.610.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
  •  
2.
  • Ghara, Raghunath, et al. (författare)
  • Constraining the intergalactic medium at z approximate to 9.1 using LOFAR Epoch of Reionization observations
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:4, s. 4728-4747
  • Tidskriftsartikel (refereegranskat)abstract
    • We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift approximate to 9.1 using new upper limits on the 21-cm power spectrum measured by the LOFAR radio telescope and a prior on the ionized fraction at that redshift estimated from recent cosmic microwave background (CMB) observations. We have used results from the reionization simulation code GRIZZLY and a Bayesian inference framework to constrain the parameters which describe the physical state of the IGM. We find that, if the gas heating remains negligible, an IGM with ionized fraction greater than or similar to 0.13 and a distribution of the ionized regions with a characteristic size greater than or similar to 8 h(-1) comoving megaparsec (Mpc) and a full width at half-maximum (FWHM) greater than or similar to 16 h(-1) Mpc is ruled out. For an IGM with a uniform spin temperature T-S greater than or similar to 3 K, no constraints on the ionized component can be computed. If the large-scale fluctuations of the signal are driven by spin temperature fluctuations, an IGM with a volume fraction less than or similar to 0.34 of heated regions with a temperature larger than CMB, average gas temperature 7-160 K, and a distribution of the heated regions with characteristic size 3.5-70 h(-1) Mpc and FWHM of less than or similar to 110 h(-1) Mpc is ruled out. These constraints are within the 95 per cent credible intervals. With more stringent future upper limits from LOFAR at multiple redshifts, the constraints will become tighter and will exclude an increasingly large region of the parameter space.
  •  
3.
  • Mertens, F. G., et al. (författare)
  • Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z approximate to 9.1 from LOFAR
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:2, s. 1662-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • A new upper limit on the 21 cm signal power spectrum at a redshift of z approximate to 9.1 is presented, based on 141 h of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally weighted power spectrum inference. Previously seen 'excess power' due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of 0.25-0.45 MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-sigma upper limit of Delta(2)(21) < (73)(2) mK(2) at k = 0.075 h cMpc(-1) is found, an improvement by a factor approximate to 8 in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radiofrequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
  •  
4.
  • Gehlot, B. K., et al. (författare)
  • The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at z=20-25 from LOFAR
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 488:3, s. 4271-4287
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the redshifted 21-cm hyperfine line of neutral hydrogen from early phases of the Universe such as Cosmic Dawn and the Epoch of Reionization promise to open a new window onto the early formation of stars and galaxies. We present the first upper limits on the power spectrum of redshifted 21-cm brightness temperature fluctuations in the redshift range z = 19.8-25.2 (54-68 MHz frequency range) using 14 h of data obtained with the LOFAR-Low Band Antenna (LBA) array. We also demonstrate the application of a multiple pointing calibration technique to calibrate the LOFAR-LBA dual-pointing observations centred on the North Celestial Pole and the radio galaxy 3C220.3, We observe an unexplained excess of similar to 30-50 per cent in Stokes / noise compared to Stokes V for the two observed fields, which decorrelates on greater than or similar to 12 s and might have a physical origin. We show that enforcing smoothness of gain errors along frequency direction during calibration reduces the additional variance in Stokes I compared Stokes V introduced by the calibration on sub-band level. After subtraction of smooth foregrounds, we achieve a 2 sigma upper limit on the 21-cm power spectrum of Delta(2)(21) < (14561 mK)(2) at k similar to 0.038 h cMpc(-1) and Delta(2)(21) < (14886 mK)(2) at k 0.038 h cMpc(-1) for the 3C220 and NCP fields respectively and both upper limits are consistent with each other. The upper limits for the two fields are still dominated by systematics on most k modes.
  •  
5.
  • Gan, H., et al. (författare)
  • Statistical analysis of the causes of excess variance in the 21 cm signal power spectra obtained with the Low-Frequency Array
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The detection of the 21 cm signal of neutral hydrogen from the Epoch of Reionization (EoR) is challenging due to bright foreground sources, radio frequency interference (RFI), and the ionosphere as well as instrumental effects. Even after correcting for these effects in the calibration step and applying foreground removal techniques, the remaining residuals in the observed 21 cm power spectra are still above the thermal noise, which is referred to as the “excess variance.”Aims. We study a number of potential causes of this excess variance based on 13 nights of data obtained with the Low-Frequency Array (LOFAR).Methods. We focused on the impact of gain errors, the sky model, and ionospheric effects on the excess variance by correlating the relevant parameters such as the gain variance over time or frequency, local sidereal time (LST), diffractive scale, and phase structure–function slope with the level of excess variance.Results. Our analysis shows that the excess variance, at the current level, is neither strongly correlated with gain variance nor the ionospheric parameters. Rather, excess variance has an LST dependence, which is related to the power from the sky. Furthermore, the simulated Stokes I power spectra from bright sources and the excess variance show a similar progression over LST with the minimum power appearing at LST bin 6h to 9h. This LST dependence is also present in sky images of the residual Stokes I of the observations. In very-wide sky images based on one night of observation after direction-dependent calibration, we demonstrate that the extra power comes exactly from the direction of bright and distant sources Cassiopeia A and Cygnus A with the array beam patterns.Conclusions. These results suggest that the level of excess variance in the 21 cm signal power spectra is related to sky effects and, hence, it depends on LST. In particular, very bright and distant sources such as Cassiopeia A and Cygnus A can dominate the effect. This is in line with earlier studies and offers a path forward toward a solution, since the correlation between the sky-related effects and the excess variance is non-negligible.
  •  
6.
  • Mevius, M., et al. (författare)
  • A numerical study of 21-cm signal suppression and noise increase in direction-dependent calibration of LOFAR data
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:3, s. 3693-3702
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate systematic effects in direction-dependent gain calibration in the context of the Low-Frequency Array (LOFAR) 21-cm Epoch of Reionization (EoR) experiment. The LOFAR EoR Key Science Project aims to detect the 21-cm signal of neutral hydrogen on interferometric baselines of 50–250 λ. We show that suppression of faint signals can effectively be avoided by calibrating these short baselines using only the longer baselines. However, this approach causes an excess variance on the short baselines due to small gain errors induced by overfitting during calibration. We apply a regularized expectation–maximization algorithm with consensus optimization (SAGECAL-CO) to real data with simulated signals to show that overfitting can be largely mitigated by penalising spectrally non-smooth gain solutions during calibration. This reduces the excess power with about a factor of 4 in the simulations. Our results agree with earlier theoretical analysis of this bias-variance trade off and support the gain-calibration approach to the LOFAR 21-cm signal data.
  •  
7.
  • Mondal, Rajesh, et al. (författare)
  • Tight constraints on the excess radio background at z=9.1 from LOFAR
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4178-4191
  • Tidskriftsartikel (refereegranskat)abstract
    • The ARCADE2 and LWA1 experiments have claimed an excess over the cosmic microwave background (CMB) at low radio frequencies. If the cosmological high-redshift contribution to this radio background is between 0.1 per cent and 22 per cent of the CMB at 1.42 GHz, it could explain the tentative EDGES low-band detection of the anomalously deep absorption in the 21-cm signal of neutral hydrogen. We use the upper limit on the 21-cm signal from the Epoch of Reionization (z = 9.1) based on 141 h of observations with LOFAR to evaluate the contribution of the high-redshift Universe to the detected radio background. Marginalizing over astrophysical properties of star-forming haloes, we find (at 95 per cent CL) that the cosmological radio background can be at most 9.6 per cent of the CMB at 1.42 GHz. This limit rules out strong contribution of the high-redshift Universe to the ARCADE2 and LWA1 measurements. Even though LOFAR places limit on the extra radio background, excess of 0.1-9.6 per cent over the CMB (at 1.42 GHz) is still allowed and could explain the EDGES low-band detection. We also constrain the thermal and ionization state of the gas at z = 9.1, and put limits on the properties of the first star-forming objects. We find that, in agreement with the limits from EDGES high-band data, LOFAR data constrain scenarios with inefficient X-ray sources, and cases where the Universe was ionized by stars in massive haloes only.
  •  
8.
  • Gehlot, B. K., et al. (författare)
  • Degree-scale galactic radio emission at 122 MHz around the North Celestial Pole with LOFAR-AARTFAAC
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Contamination from bright diffuse Galactic thermal and non-thermal radio emission poses crucial challenges in experiments aiming to measure the 21-cm signal of neutral hydrogen from the cosmic dawn (CD) and Epoch of Reionisation (EoR). If not included in calibration, this diffuse emission can severely impact the analysis and signal extraction in 21-cm experiments. We examine large-scale diffuse Galactic emission at 122 MHz around the North Celestial Pole, using the Amsterdam-ASTRON Radio Transient Facility and Analysis Centre (AARTFAAC-) High Band Antenna (HBA) system.Methods. In this pilot project, we present the first-ever wide-field image produced with a single sub-band of the data recorded with the AARTFAAC-HBA system. We demonstrate two methods, multi-scale CLEAN and shapelet decomposition, to model the diffuse emission revealed in the image. We used angular power spectrum metrics to quantify different components of the emission and compared the performance of the two diffuse structure modelling approaches.Results. We observed that the point sources dominate the angular power spectrum (ℓ(ℓ + 1)Cℓ/2π≡Δ2(ℓ)) of the emission in the field on scales of ℓ ≳ 60 (≲3 degree). The angular power spectrum after subtraction of compact sources is flat within the 20 ≲ ℓ ≲ 200 range, suggesting that the residual power is dominated by the diffuse emission on scales of ℓ ≲ 200. The residual diffuse emission has a brightness temperature variance of Δℓ=1802 = (145.64 ± 13.61) K2 at 122 MHz on angular scales of 1 degree, and it is consistent with a power law following Cℓ ∝ ℓ−2.0 in the 20 ≲ ℓ ≲ 200 range. We also find that, in the current set-up, multi-scale CLEAN is suitable to model the compact and diffuse structures on a wide range of angular scales, whereas the shapelet decomposition method better models the large scales, which are of the order of a few degrees and wider.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy